精英家教网 > 初中数学 > 题目详情
精英家教网如图,D为反比例函数y=
k
x
(k<0)图象上一点,过D作DC⊥y轴于C,DE⊥x轴于E,一次函数y=-x+m与y=-
3
3
x+2的图象都过C点,与x轴分别交于A、B两点.若梯形DCAE的面积为4,求k的值.
分析:首先根据y=-
3
3
x+2可以求出C的坐标,然后代入y=-x+m可以确定m的值,设D(a,2),用a表示DC、EA,再根据梯形DCAE的面积为4可以得到关于a的方程,解方程求出a,最后利用反比例函数解析式求出k.
解答:解:∵y=-
3
3
x+2经过C点,
∴当x=0时,y=2;
∴C(0,2).
∵y=-x+m也经过点C,
∴2=-0+m.
∴m=2.
∴y=-x+2.
当y=0时,x=2;
∴A(2,0).
∵DC⊥y轴于C,
∴设D(a,2).
∴DC=EO=-a,DE=2.
∴EA=2-a.
∵D为反比例函数,y=
k
x
(k<0)图象上一点,
∴2a=k.
∵S梯形DCAE=
1
2
(DC+EA)•DE=
1
2
(-a+2-a)×2=2-2a=2-k=4,
∴k=-2.
点评:此题考查了利用一次函数的性质解题和利用几何图形的面积求反比例函数的解析式,综合性较强,同学们要重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,A为反比例函数y=
kx
图象上一点,AB垂直x轴于点B,若S△AOB=5,则k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A为反比例函数y=
kx
(k≠0)
上一点,连接OA,过A点作AB⊥x轴于B,若OA=5,AB=4.求该反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A为反比例函数y=
kx
图象上一点,AB垂直x轴于点B,若S△AOB=6,则k=
-12
-12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为反比例函数y=
kx
上一点,PA⊥x轴于A,PB⊥y轴于B,且S矩形PAOB=3,则k=
-3
-3

查看答案和解析>>

同步练习册答案