精英家教网 > 初中数学 > 题目详情

【题目】2016江苏省连云港市)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度ymg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.

1)求整改过程中硫化物的浓度y与时间x的函数表达式;

2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?

【答案】1;(2)能.

【解析】试题分析:(1)分情况讨论:①当0x3时,设线段AB对应的函数表达式为y=kx+b;把A00),B34)代入得出方程组,解方程组即可;②当x3时,设y=,把(34)代入求出m的值即可;

2)令=1,得出x=1215,即可得出结论.

试题解析:(1)分情况讨论:

①当0x3时,设线段AB对应的函数表达式为y=kx+b

A00),B34)代入得,解得: ,∴y=﹣2x+10

②当x3时,设,把(34)代入得:m=3×4=12,∴

综上所述:

2)能;理由如下:

=1,则x=1215,故能在15天以内不超过最高允许的1.0mg/L

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.

(1)直接写出a的值、点A的坐标及抛物线的对称轴;

(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;

(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价1元,那么每月就可以多售出5个.

降价前销售这种学习机每月的利润是多少元?

经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?

的销售中,销量可好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

如图1,在中,CD为角平分线,,求证:CD的完美分割线.

中,CD的完美分割线,且为等腰三角形,求的度数.

如图2中,CD的完美分割线,且是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD△ABC的角平分线,点OAB的中点,连接DO并延长到点E,使OE=OD,连接AEBE

1)求证:四边形AEBD是矩形;

2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线ABCD于点OOE平分∠BODOF平分∠COB,∠AOD:∠BOE52,则∠AOF等于(  )

A. 140° B. 130° C. 120° D. 110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,AB=AC,DAC边上一动点,CE⊥BDE.

(1)如图(1),若BD平分∠ABC时,∠ECD的度数;②延长CEBA的延长线于点F,补全图形,探究BDEC的数量关系,并证明你的结论;

(2)如图(2),过点AAF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把抛物线y=ax+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x-3x+5,则a+b+c=__________

查看答案和解析>>

同步练习册答案