精英家教网 > 初中数学 > 题目详情

【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?

【答案】
(1)解:设第一批衬衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:

解得:x=150,

经检验x=150是原方程的解,

第一批衬衫每件进价是150元,第二批每件进价是140元,

(件), (件),

答:第一批衬衫进了30件,第二批进了15件


(2)解:设第二批衬衫每件售价y元,根据题意可得:

30×(200﹣150)+15(y﹣140)≥1950,

解得:y≥170,

答:第二批衬衫每件至少要售170元


【解析】根据题意列出分式方程,设第一批衬衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得,解得:x=150,得到第一批衬衫每件进价是150元,第二批每件进价是140元,求出这两次各购进这种衬衫数件;(2)设第二批衬衫每件售价y元,根据题意可得:30×(200﹣150)+15(y﹣140)≥1950,解得:y≥170,所以第二批衬衫每件至少要售170元.
【考点精析】利用分式方程的应用对题目进行判断即可得到答案,需要熟知列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】操作与探究

综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同
一直线上(如图1),其中∠AMN=90°,AM=MN.
(1)猜想发现
老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE﹣DF;如图3,当45°<α<90°时,其它条件不变.
①填空:∠DAF+∠BAE=度;
②猜想:线段EF,BE,DF三者之间的数量关系是:
(2)证明你的猜想;
(3)拓展探究
在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知正方形ABCD的对角线ACBD相交于点OEAC上一点,连接EB,过点AAM⊥BE,垂足为MAMBD于点F

(1)求证:OEOF

(2)如图(2),若点EAC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其他条件不变,则结论“OEOF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一组数据1234x的平均数与中位数相同,则实数x的值不可能( )

A. 0 B. 2.5 C. 3 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠A36°,∠1=∠2,∠ADEEDB,则∠DEB_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的方格中,每个小方格都是边长为1个单位长度的正方形,的三个顶点都在格点(小方格的顶点)上.

1)请建立适当的平面直角坐标系,使,并写出点的坐标;

2)在(1)的条件下,将先向右平移4个单位长度再向上平移2个单位长度后可得到,请在图中画出平移后的,并分别写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】雷达二维平面定位的主要原理是:测量目标的两个信息距离和角度,目标的表示方法为,其中,m表示目标与探测器的距离;表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为目标C的位置表示为.用这种方法表示目标B的位置,正确的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,O是直线AB上的一点.

(1)如图1,当∠AOD是直角,3AOC=BOD,求∠COD的度数;

(2)(1)中∠COD绕着点O顺时针旋转(ODOB重合即停止),如图2OEOF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;

(3)(1)中线段OCOD绕着点O顺时针旋转,速度分别为每秒20°和每秒10°(ODOB重合时旋转都停止),OMON分别平分∠BOC、∠BOD,多少秒时∠COM=BON(直接写出答案,不必写出过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点MAB的中点,点PMB上.分别以AP,PB为边,作正方形APCD和正方形PBEF,连结MDME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为________

查看答案和解析>>

同步练习册答案