精英家教网 > 初中数学 > 题目详情
(2013•邵阳)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.
(1)求证:CF∥AB.
(2)求∠DFC的度数.
分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;
(2)利用三角形内角和定理进行计算即可.
解答:(1)证明:∵CF平分∠DCE,
∴∠1=∠2=
1
2
∠DCE,
∵∠DCE=90°,
∴∠1=45°,
∵∠3=45°,
∴∠1=∠3,
∴AB∥CF;

(2)∵∠D=30°,∠1=45°,
∴∠DFC=180°-30°-45°=105°.
点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件
∠B=90°
∠B=90°
,使四边形ABCD为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邵阳)如图所示,已知抛物线y=-2x2-4x的图象E,将其向右平移两个单位后得到图象F.
(1)求图象F所表示的抛物线的解析式:
(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.

查看答案和解析>>

同步练习册答案