精英家教网 > 初中数学 > 题目详情

如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.

证明:l1∥l2,BM⊥l1,DN⊥l2
∴∠QMN=∠P=∠N=90°,
∴四边形PQMN为矩形,
∵AB=AD,∠M=∠N=90°
∠ADN+∠NAD=90°,∠NAD+∠BAM=90°,
∴∠ADN=∠BAM,
又∵AD=BA,
∴Rt△ABM≌Rt△DAN(HL),
∴AM=DN
同理AN=DP,
∴AM+AN=DN+DP,即MN=PN.
∴四边形PQMN是正方形.
分析:可由Rt△ABM≌Rt△DAN,AM=DN同理可得AN=NP,所以MN=PN,进而可得其为正方形.
点评:本题考查了矩形的判定和性质、全等三角形的判定和性质以及正方形的判定,解题的关键是熟练掌握各种几何图形的性质和判定方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案