【题目】如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.
⑴填空:∠ABC= °,AC= ;
⑵判断:△ABC与△DEF是否相似,并证明你的结论.
【答案】(1)135,;(2)△ABC∽△DEF,证明见解析
【解析】
(1)先在Rt△BCG中根据等腰直角三角形的性质求出∠GBC的度数,再根据∠ABC=∠GBC+∠ABG即可得出∠ABC的度数;在Rt△ACH中利用勾股定理即可求出AC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
(1)∵△BCG是等腰直角三角形,∴∠GBC=45°.
∵∠ABG=90°,∴∠ABC=∠GBC+∠ABG=45°+90°=135°.
在Rt△AHC中,∵AH=4,CH=2,∴AC.
故答案为:135,;
(2)△ABC∽△DEF.理由如下:
在4×4的正方形方格中,∵∠ABC=∠DEF=135°,∴∠ABC=∠DEF.
∵AB=2,BC=2,FE=2,DE,∴,∴△ABC∽△DEF.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.
(1)求证:∠DEF=∠ABF;
(2)求证:F为AD的中点;
(3)若AB=8,AC=10,且EC⊥BC,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,中心为点C正方形的各边分别与两坐标轴平行,若点P是与C不重合的点,点P关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ=2CM,则称Q为点P关于正方形的仿射点如图为点P关于正方形的仿射点Q的示意图.
特别地,当点P与中心C重合时,规定CP=0.
(1)当正方形的中心为原点O,边长为2时.
①分别判断点F(2,0),G(,),H(3,3)关于该正方形的仿射点是否存在?若存在,直接写出其仿射点的坐标;
②若点P在直线y=﹣x+3上,且点P关于该正方形的仿射点Q存在,求点P的横坐标的取值范围;
(2)若正方形的中心C在x轴上,边长为2,直线y=与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于该正方形的仿射点Q在正方形的内部,直接写出正方形的中心C的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)求t=15时,△PEF的面积;
(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.
(3)当t为何值时,△EOP与△BOA相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.
⑴用含a的式子表示b.
⑵当a=﹣时,y=ax2+bx+c的函数值为正整数,求满足条件的x值.
⑶若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当△EAB的面积最大时,E点的横坐标为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a,b,c满足=|c﹣17|+b2﹣30b+225,
(1)求a,b,c的值;
(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)求PE的长最大时m的值.
(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com