精英家教网 > 初中数学 > 题目详情
如图,已知线段AB、CD分别表示甲、乙两幢楼的高,AB⊥BD,CD⊥BD,从甲楼顶部A处测得乙楼顶部C的仰角α=30°,测得乙楼底部D的俯角β=60°,已知甲楼高AB=24m,求乙楼CD的高.
分析:首先过A作AE⊥CD于E,由AB⊥BD,CD⊥BD,可得四边形ABDE是矩形,则可求得DE的长,然后由三角函数的性质,求得CE的长,即可求得答案.
解答:解:如图,过A作AE⊥CD于E,
∵AB⊥BD,CD⊥BD,
∴四边形ABDE是矩形,
∴DE=AB=24m,
∵在Rt△AED中,AE=
ED
tanβ
=
24
3
=8
3
(m),
∴在Rt△ACE中,CE=AE•tanα=8
3
×
3
3
=8(m),
∴CD=DE+CE=24+8=32(m).
答:乙楼CD的高为32m.
点评:此题考查了仰角与俯角的知识.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图:已知线段AB,点C在AB的延长线上,AC=
5
3
BC,D在AB的反向延长线上,BD=
3
5
DC.精英家教网
(1)在图上画出点C和点D的位置;
(2)设线段AB长为x,则BC=
 
;AD=
 
;(用含x的代数式表示)
(3)若AB=12cm,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为(  )
精英家教网
A、6cmB、5cmC、4cmD、3cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB,按下列要求作图:分别以A、B为圆心,大于
12
AB
的相同长度为半径画弧,设两段弧在AB上方的交点为M,连接AM,延长AM到C,使得AM=MC,连接BC(只要保留作图痕迹).根据所作图形,求证:∠ABC=90°.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB和CD相交于点O,线段OA=OD,OC=OB,求证:△OAC≌△ODB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知线段AB,延长AB至C,使得BC=
1
2
AB,若D是BC的中点,CD=2cm,则AC的长等于(  )
A、4cmB、8cm
C、10cmD、12cm

查看答案和解析>>

同步练习册答案