精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(11),点Bx轴正半轴上,点D在第三象限的双曲线y上,过点CCEx轴交双曲线于点E,连接BE,则△BCE的面积为( )

A. 5B. 6C. 7D. 8

【答案】C

【解析】

作辅助线,构建全等三角形:过DGHx轴,过AAGGH,过BBMHCM,证明AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示DE的坐标,根据三角形面积公式可得结论.

解:过DGHx轴,过AAGGH,过BBMHCM

D(x)

∵四边形ABCD是正方形,

ADCDBC,∠ADC=∠DCB90°

易得AGD≌△DHC≌△CMB(AAS)

AGDH=﹣x1

DGBM

GQ1DQ=﹣DHAG=﹣x1

QG+DQBMDQ+DH得:1=﹣1x

解得x=﹣2

D(2,﹣3)CHDGBM14

AGDH=﹣1x1

∴点E的纵坐标为﹣4

y=﹣4时,x=﹣

E(,﹣4)

EH2

CECHHE4

SCEBCEBM××47

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB90°BC3cosB,将△ABC绕点C顺时针旋转90°得到△AB'CP为线段AB上的动点,以点P为圆心,PA长为半径作⊙P,当⊙P与△A′B′C的一边所在的直线相切时,⊙P的半径为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2EF分别为BCCD的中点,连接AEBF交于点G,将△BCF沿BF对折,得到△BPF,延长FPAD于点M,交BA的延长线于点Q.连接BM,下列结论中:AEBFAEBFAQMBF60°.

正确的结论是_____(填正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+c的图象与x轴交于A(﹣30)、B10)两点,与y轴交于点C,且OCOA

1)求抛物线解析式;

2)过直线AC上方的抛物线上一点My轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值;

3)如图2D0,﹣2),连接BD,将△OBD绕平面内的某点(记为P)逆时针旋转180°得到△OBD′,OBD的对应点分别为O′、B′、D′.若点B′、D′两点恰好落在抛物线上,求旋转中心点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在宣传民族团结活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.

请结合图中所给信息,解答下列问题:

(1)本次调查的学生共有_____人;

(2)补全条形统计图;

(3)该校共有1200名学生,请估计选择唱歌的学生有多少人?

(4)七年一班在最喜欢器乐的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径作⊙O,分别交ACBC于点DE,点FAC的延长线上,且∠A2CBF

(1)求证:BF与⊙O相切.

(2)BCCF4,求BF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数为常数)

(1)该函数的图像与轴公共点的个数是(

A.0 B.1 C.2 D.1或2

(2)求证:不论为何值,该函数的图像的顶点都在函数的图像上.

(3)当时,求该函数的图像的顶点纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科技公司用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40.经过市场调研发现:该产品的销售单价不低于100元,但不超过180.设销售单价为(元),年销售量为(万件),年获利为(万元),该产品年销售量(万件)与产品售价(元)之间的函数关系如图所示.

1)求之间的函数表达式,并写出的取值范围;

2)求第一年的年获利之间的函数表达式,并说明投资的第一年,该公司是盈利还是亏损?并求当盈利最大或亏损最小时的产品售价;

3)在(2)的条件下.即在盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利不低于1370万元?若能,求出第二年的售价在什么范围内;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:祖冲之奖刘徽奖赵爽奖杨辉奖,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获祖冲之奖的学生成绩统计表:

祖冲之奖的学生成绩统计表:

分数

80

85

90

95

人数

4

2

10

4

根据图表中的信息,解答下列问题:

这次获得刘徽奖的人数是多少,并将条形统计图补充完整;

获得祖冲之奖的学生成绩的中位数是多少分,众数是多少分;

在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.

查看答案和解析>>

同步练习册答案