精英家教网 > 初中数学 > 题目详情

【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:祖冲之奖刘徽奖赵爽奖杨辉奖,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获祖冲之奖的学生成绩统计表:

祖冲之奖的学生成绩统计表:

分数

80

85

90

95

人数

4

2

10

4

根据图表中的信息,解答下列问题:

这次获得刘徽奖的人数是多少,并将条形统计图补充完整;

获得祖冲之奖的学生成绩的中位数是多少分,众数是多少分;

在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.

【答案】(1)刘徽奖的人数为人,补全统计图见解析;(2)获得祖冲之奖的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限)

【解析】

1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;

2)根据中位数和众数的定义求解可得;

3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.

1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92=40,补全统计图如下:

故答案为:40

2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.

故答案为:9090

3)列表法:

∵第二象限的点有(﹣22)和(﹣12),∴P(点在第二象限)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(11),点Bx轴正半轴上,点D在第三象限的双曲线y上,过点CCEx轴交双曲线于点E,连接BE,则△BCE的面积为( )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG.同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过多少秒时.直线MN和正方形AEFG开始有公共点?(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx3k+4与O交于B、C两点,则弦BC的长的最小值为( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:

(1)A、B两点之间的距离是   米,甲机器人前2分钟的速度为   /分;

(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;

(3)若线段FGx轴,则此段时间,甲机器人的速度为   /分;

(4)求A、C两点之间的距离;

(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABO中,∠B=90°,∠OAB=30°,OA=3.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P40)为圆心,PA长为半径画圆,⊙Px轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:

(发现)(1的长度为多少;

2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积.

(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.

(拓展)当RtABO的边有两个交点时,请你直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形纸片ABCD中,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF

的长为多少;

AE的长;

BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点Bx轴上,AC=BC,过点BBDx轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.

(1)求抛物线的解析式及点D的坐标;

(2)当CMN是直角三角形时,求点M的坐标;

(3)试求出AM+AN的最小值.

查看答案和解析>>

同步练习册答案