精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点Bx轴上,AC=BC,过点BBDx轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.

(1)求抛物线的解析式及点D的坐标;

(2)当CMN是直角三角形时,求点M的坐标;

(3)试求出AM+AN的最小值.

【答案】(1)抛物线解析式为y=﹣x2+x+4;D点坐标为(3,5);(2)M点的坐标为(0,)或(0,);(3)AM+AN的最小值为

【解析】1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;

(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=OCB,根据相似三角形的判定方法,当时,CMN∽△COB,于是有∠CMN=COB=90°,即;当时,CMN∽△CBO,于是有∠CNM=COB=90°,即,然后分别求出m的值即可得到M点的坐标;

(3)连接DN,AD,如图,先证明ACM≌△DBN,则AM=DN,所以AM+AN=DN+AN,利用三角形三边的关系得到DN+AN≥AD(当且仅当点A、N、D共线时取等号),然后计算出AD即可.

1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c,解得

∴抛物线解析式为y=﹣x2+x+4;

AC=BC,COAB,

OB=OA=3,

B(3,0),

BDx轴交抛物线于点D,

D点的横坐标为3,

x=3时,y=﹣×9+×3+4=5,

D点坐标为(3,5);

(2)在RtOBC中,BC==5,

M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,

∵∠MCN=OCB,

∴当时,△CMN∽△COB,则∠CMN=COB=90°,

,解得m=,此时M点坐标为(0,);

时,△CMN∽△CBO,则∠CNM=COB=90°,

,解得m=,此时M点坐标为(0,);

综上所述,M点的坐标为(0,)或(0,);

(3)连接DN,AD,如图,

AC=BC,COAB,

OC平分∠ACB,

∴∠ACO=BCO,

BDOC,

∴∠BCO=DBC,

DB=BC=AC=5,CM=BN,

∴△ACM≌△DBN,

AM=DN,

AM+AN=DN+AN,

DN+AN≥AD(当且仅当点A、N、D共线时取等号),

DN+AN的最小值=

AM+AN的最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并。立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)

(1)直接写出渔船离开港口的距离s和渔船离开港口的时间t之间的函数关系式

(2)求渔船与渔政船相遇对,两船与黄岩岛的距离、

(3在渔政船驶往黄岩的过程中,求渔船从港口 出发经过多长时间与渔政船相距30海里?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点表示的数为,点表示的数为是数轴上一点,且,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.

(1)数轴上点表示的数为 ,并用含的代数式表示点所表示的数为

(2)设的中点,的中点,点在运动过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,求线段的长度;

(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,动点从点出发,以点每秒个单位长度沿数轴向左匀速运动,若三点同时出发,在运动过程中,的距离,距离中,是否会有这两段距离相等的时候?若有,请求出此时的值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

ab)(a+b)=a2b2

ab)(a2+ab+b2)=a3b3

ab)(a3+a2b+ab2+b3)=a4b4

利用你的发现的规律解决下列问题

1)(ab)(a4+a3b+a2b2+ab3+b4)=   (直接填空);

2)(ab)(an1+an2b+an3b2…+abn2+bn1)=   (直接填空);

3)利用(2)中得出的结论求62019+62018+…+62+6+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AEBC,AFCD,垂足分别为E,F,且BE=DF.

(1)求证:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是(  )

A. 作∠APB的平分线PCAB于点C

B. 过点PPCAB于点CAC=BC

C. AB中点C,连接PC

D. 过点PPCAB,垂足为C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某一出租车一天下午以鼓楼为出发点在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:.

1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?

2)若每千米的价格为2.4元,司机一个下午的营业额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)有理数在数轴上的对应点如图所示,化简代数式:

2)哈市某垃圾处理场一周处理生活垃圾任务为210吨,计划每天处理30吨,由于各种原因,实际每天处理量与计划相比有出入,某周七天的实际处理情况记录如下:

+6-3+4-1+2-50

垃圾场这一周实际处理生活垃圾是多少吨?

若该垃圾场实行计量工资,每处理一吨生活垃圾给300元,同时又规定超额处理一吨垃圾另外奖100元,完不成任务的少处理一吨另外扣100元,那么该场工人这一周的工资总额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】幸福是奋斗出来的,在数轴上,若CA的距离刚好是3,则C点叫做A幸福点,若CA、B的距离之和为6,则C叫做A、B幸福中心

(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是   

(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是   (填一个即可);

(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是AB的幸福中心?

查看答案和解析>>

同步练习册答案