精英家教网 > 初中数学 > 题目详情
一条公路弯道处是一段圆弧,点O是这条弧所在圆的圆心,点C是的中点,OC与AB相交于点D。已知AB=120m,CD=20m,那么这段弯道的半径为(   )
C
分析:连接OA,由垂径定理求出AD的长,判断出△AOD的形状,在设OA=r,利用勾股定理即可得出r的长.
解答:解:连接OA,

∵C是的中点,OC与AB相交于点D,
∴AB⊥OC,
∴AD=AB=×120
=60m,
∴△AOD是直角三角形,
设OA=r,则OD=r-CD=OC-CD=r-20,
在Rt△AOD中,
OA2=AD2+OD2,即r2=602+(r-20)2,解得r=100m.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图2,点在⊙O上,若,则的度数为 (    ).
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•广州)如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为(  )
A.B.
C.πD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB是⊙O的弦,半径OA=6cm,∠AOB=120º,则AB=       cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·柳州)(本题满分10分)
如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CDAD,垂足为D,直线CDAB的延长线交于点E
(1)求证:直线CD为⊙O的切线;
(2)当AB=2BE,且CE=时,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

.如图3,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=
A.40°B.60°C.70°D.80°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段
圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧
与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之
和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA
边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到
了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形
纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她
提出了如下问题:
问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并
求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC
按上述方法经过5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
?
请你解答上述两个问题.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(11·西宁)如图10,在⊙O中,ABAC是互相垂直的两条弦,ODAB于点DOEAC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为_  ▲  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为      (结果保留π).

查看答案和解析>>

同步练习册答案