精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则 的值为(
A.
B.
C.
D.

【答案】A
【解析】解:∵矩形沿直线AC折叠,点B落在点E处,
∴∠BAC=∠EAC,AE=AB=CD,
∵矩形ABCD的对边AB∥CD,
∴∠DCA=∠BAC,
∴∠EAC=∠DCA,
设AE与CD相交于F,则AF=CF,
∴AE﹣AF=CD﹣CF,
即DF=EF,
=
又∵∠AFC=∠EFD,
∴△ACF∽△EDF,
= =
设DF=3x,FC=5x,则AF=5x,
在Rt△ADF中,AD= = =4x,
又∵AB=CD=DF+FC=3x+5x=8x,
= =
故选A.
根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DAC=∠BCA,从而得到∠EAC=∠DAC,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出 = ,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.
(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用两种方法证明三角形的外角和等于360°”.

已知:如图BAECBFACDABC的三个外角.

求证:∠BAECBFACD=360°.

证法1:________________________________________________________________,

∴∠BAE1+CBF2+ACD3=180°×3=540°,

∴∠BAECBFACD=540°-(1+2+3).

______________,

∴∠BAECBFACD=540°-180°=360°.

请把证法1补充完整并用不同的方法完成证法2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;
(3)请估计该市这一年(365天)达到“优”和“良”的总天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB= ,反比例函数y= (k>0)在第一象限内的图象经过点A,与BC交于点F.

(1)若OA=10,求反比例函数解析式;
(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;
(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF; ①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续正整数按以下规律排列,则位于第7行第7列的数x是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两辆货车分别从两地出发,沿同一条公路相向而行,当到达对方的出发地后立即装卸货物,5分钟后再按原路以原速度返回各自的出发地,已知两地相距100千米.甲车比乙车早5分钟出发,甲车出发10分钟时两车都行驶了10千米,甲、乙两车离各自出发地的路程(千米)与甲车出发时间 (分钟)的函数图像如图所示.

(1)甲车从地出发后,经过多长时间甲、乙两车第一次相遇?

(2)乙车从地出发后,经过多长时间甲、乙两车与各自出发地的距离相等?

查看答案和解析>>

同步练习册答案