精英家教网 > 初中数学 > 题目详情
(2012•宿迁)绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n 100 300 400 600 1000 2000 3000
发芽的粒数m 96 282 382 570 948 1912 2850
发芽的频率
m
n
0.960 0.940 0.955 0.950 0.948 0.956 0.950
则绿豆发芽的概率估计值是 (  )
分析:本题考查了绿豆种子发芽的概率的求法.对于不同批次的绿豆种子的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.
解答:解:
.
x
=(96+282+382+570+948+1912+2850)÷(100+300+400+600+1000+2000+3000)≈0.95,
当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95.
故选B.
点评:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•宿迁模拟)在△ABC中,若|sinA-
1
2
|+(
3
2
-cosB)2=0,则∠C=
120
120
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图是使用测角仪测量一幅壁画高度的示意图,已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画底端的俯角∠BDF=30°,且点D距离地面的高度DE=2m,求壁画AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图,在四边形ABCD中,∠DAB=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G,设AD=a,BC=b.
(1)求CD的长度(用a,b表示);
(2)求EG的长度(用a,b表示);
(3)试判断EG与FG是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2

查看答案和解析>>

同步练习册答案