精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.
(1)求证:AE平分∠DAC;
(2)若AB=3,∠ABE=60°.
①求AD的长;
②求出图中阴影部分的面积.

解:(1)连接OE.
∵CD是⊙O的切线,
∴OE⊥CD,
∵AD⊥CD,
∴AD∥OE,
∴∠DAE=∠AEO,
∵OA=OE,
∴∠EAO=∠AEO,
∴∠DAE=∠EAO,
∴AE平分∠DAC;

(2)①∵AB是⊙O的直径,
∴∠AEB=90°,
∵∠ABE=60°,
∴∠EAO=30°,
∴∠DAE=∠EAO=30°,
∵AB=3,
∴AE=AB•cos30°=3×=,BE=AB=
在Rt△ADE中,
∵∠DAE=30°,AE=
∴AD=AE•cos30°=×=
②∵∠EAO=∠AEO=30°,
∴∠AOE=180°-∠EAO-∠AEO=180°-30°-30°=120°,
∵OA=OB,
∴S△AOE=S△BOE=S△ABE
∴S阴影=S扇形AOE-S△AOE=S扇形AOE-S△ABE=-×××=-
分析:(1)连接OE,由切线的性质可知,OE⊥CD,再根据AD⊥CD可知AD∥OE,故∠DAE=∠AEO,再由OA=OE可知∠EAO=∠AEO,故∠DAE=∠EAO,故可得出结论;
(2)①先根据∠ABE=60°求出∠EAO的度数,进而得出∠DAE的度数,再根据锐角三角函数的定义求出AE及BE的长,在Rt△ADE中利用锐角三角函数的定义即可得出AD的长;
②由三角形内角和定理求出∠AOE的度数,再根据OA=OB可知S△AOE=S△BOE=S△ABE求出△AOE的面积,由S阴影=S扇形AOE-S△AOE即可得出结论.
点评:本题考查的是切线的性质及扇形面积的计算,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案