![]()
| 解:(1)∵AB是⊙O的直径,DE= ∴OA=OC=OE=DE. 则∠EOD=∠CDB, ∠OCE=∠OEC. 设∠CDB=x,则∠EOD=x,∠OCE=∠OEC=2x. 又∠BOC=108°,∴∠CDB+∠OCD=108°. ∴x+2x=108,x=36°. ∴∠CDB=36°; (2)①∵∠COB=108°,∴∠COD=72°. 又∠OCD=2x=72°, ∴∠OCD=∠COD.∴OD=CD. ∴△COD是黄金三角形. ∴ ∵OD=2,∴OC= ∵CD=OD=2,DE=OC= ∴CE=CD-DE=2-( . ②存在,有三个符合条件的点P1、P2、P3(如图所示). ⅰ)以OE为底边的黄金三角形:作OE的垂直平分线分别交直线AB、 CD得到点P1、P2 . ⅱ)以OE为腰的黄金三角形:点P3与点A重合. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:初中数学解题思路与方法 题型:047
已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com