精英家教网 > 初中数学 > 题目详情
(2013•武汉模拟)已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.
(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请判断并直接写出结果;
(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.
分析:(1)根据正方形性质求出AF=AM,AD=AB,∠FAM=∠DAB=90°,推出∠FAD=∠MAB,证△FAD≌△MAB,推出BM=DF,∠FDA=∠ABD=45°,求出∠ADB=45°即可;
(2)根据正方形性质求出AF=AM,AD=AB,∠FAM=∠DAB=90°,推出∠FAD=∠MAB,证△FAD≌△MAB,推出BM=DF,∠FDA=∠ABD=45°,求出∠ADB=45°即可.
解答:解:(1)BM=DF,BM⊥DF
理由是:∵四边形ABCD、AMEF是正方形,
∴AF=AM,AD=AB,∠FAM=∠DAB=90°,
∴∠FAM-∠DAM=∠DAB-∠DAM,
即∠FAD=∠MAB,
∵在△FAD和△MAB中
AF=AM
∠FAD=∠MAB
AD=AB

∴△FAD≌△MAB,
∴BM=DF,∠FDA=∠ABD=45°,
∵∠ADB=45°,
∴∠FDB=45°+45°=90°,
∴BM⊥DF,
即BM=DF,BM⊥DF.

(2)解:成立,
理由是:∵四边形ABCD和AMEF均为正方形,
∴AB=AD,AM=AF,∠BAD=∠MAF=90°,
∴∠FAM+∠DAM=∠DAB+∠DAM,
即∠FAD=∠MAB,
∵在△FAD和△MAB中
AF=AM
∠FAD=∠MAB
AD=AB

∴△FAD≌△MAB,
∴BM=DF,∠ABM=∠ADF,
由正方形ABCD知,∠ABM=∠ADB=45°,
∴∠BDF=∠ADB+∠ADF=90°,
即BM⊥DF,
∴(1)中的结论仍成立.
点评:本题考查了正方形的性质和全等三角形的性质和判定的应用,关键是求出△FAD≌△MAB,本题具有一定的代表性,主要培养学生运用性质进行推理的能力和猜想能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A落在BC边上,落点为E,折痕交AB边交于点F;若BE:EC=m:n,则AF:FB=
m+n
n
m+n
n
(用含有m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)化简:(
a
a-b
-
b2
a2-ab
)÷
a2+2ab+b2
a
,当b=-2时,请你为a选择一个适当的值并代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)若x1,x2是一元二次方程x2-4x+3=0的两个根,则x1+x2的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)已知x1、x2是方程x2-
5
x+l=O的两根,则x1+x2的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,在⊙O中,半径OA⊥弦BC,∠AOB=50°,则圆周角∠ADC=
25°
25°

查看答案和解析>>

同步练习册答案