精英家教网 > 初中数学 > 题目详情
操作与探索:
已知点O为直线AB上一点,作射线OC,将直角三角板ODE放置在直线上方(如图①),使直角顶点与点O重合,一条直角边OD重叠在射线OA上,将三角板绕点O旋转

(1)当三角板旋转到如图②的位置时,若OD平分∠AOC,试说明OE也平分∠BOC.
(2)若OC⊥AB,垂足为点O(如图③),请直接写出与∠DOB互补的角                       
(3)若∠AOC=135°(如图④),三角板绕点O按顺时针从如图①的位置开始旋转,到OE边与射线OB重合结束. 请通过操作,探索:在旋转过程中,∠DOB∠COE的差是否发生变化?若不变,请求出这个差值;若变化,请用含有n(n为三角板旋转的度数)的代数式表示这个差.
(1)由OD平分∠AOC可得∠AOD=∠COD,由∠DOE=90°可得∠AOD+∠EOB=90°,∠COD+∠COE=90°,即可证得结论;(2)∠AOD、∠COE;
(3)①若n≤45°,∠DOB∠COE=135°,②若n>45°,∠DOB∠COE=225°2n

试题分析:(1)由OD平分∠AOC可得∠AOD=∠COD,由∠DOE=90°可得∠AOD+∠EOB=90°,∠COD+∠COE=90°,即可证得结论;
(2)由OC⊥AB可得∠AOD+∠COD=90°,由∠DOE=90°可得∠COD+∠COE=90°,即可得到∠AOD=∠COE,从而可以求得与∠DOB互补的角;
(3)由于旋转45°时,OE与OC重合,故要分n≤45°与n>45°两种情况分析.
(1)∵OD平分∠AOC
∴∠AOD=∠COD
∵∠DOE=90°
∴∠AOD+∠EOB=90°,∠COD+∠COE=90°
∴∠COE=∠EOB
∴OE也平分∠BOC;
(2)∵OC⊥AB,∠DOE=90°
∴∠AOD+∠COD=90°,∠COD+∠COE=90°
∴∠AOD=∠COE
∴与∠DOB互补的角为∠AOD、∠COE;
(3)①若n≤45°,∠DOB∠COE=(180°-n)-(45°-n)=180°-n-45°+n=135°,
②若n>45°,∠DOB∠COE=(180°-n)-(n-45°)=180°-n-n+45°=225°2n.
点评:解答本题的关键是注意直角三角板的问题往往应用到同角的余角相等的知识,同时熟记旋转对应边是夹角是旋转角.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,将△ABC(∠A<60°)以顶点B为旋转中心逆时针旋转60°得△BDE;

(1)试判断△BCE的形状,请说明理由;
(2)在(1)的条件下,再将△ABC以顶点C为旋转中心顺时针旋转60°,得△ECF;连接AD、AF,四边形AFED一定是平行四边形吗?请说明理由;
(3)四边形AFED可能是矩形吗?请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点P(,3)与点Q(-2,)关于y轴对称,则+=_________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是        _.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC与△ADE是成中心对称的两个图形,点A是对称中心,点B的对称点为点  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 (   )
A.B.C.D.图1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个图案中,不是轴对称图形的是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC在平面直角坐标系中的位置如右图所示.
(1)直接写出点A的坐标;
(2)作出△ABC关于轴对称的△,并分别写出点,B1,C1的坐标

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是BC上一点,△ABE经过旋转后得到△ADF.

(1)旋转中心是点       
(2)旋转角最少是       度;
(3)如果点G是AB上的一点,那么经过上述旋转后,点G旋转到什么位置?请在图中将点G的对应点G’表示出来;
(4)如果AG=3,请计算点G旋转到G’过程中所走过的最短的路线长度;(结果保留)
(5)如果正方形ABCD的边长为5,求四边形AECF的面积.

查看答案和解析>>

同步练习册答案