精英家教网 > 初中数学 > 题目详情
 已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。(1)求此二次函数的解析式;(2)将这个二次函数的图像向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠sin∠ABD;(3)在第(2)小题的条件下,连接OC,试探究直线AB与OC的位置关系,并且说明理由。
(1)y=-2x2-4x+6;(2)sin∠ABD=;(3)略.

试题分析:(1)把点A、B的坐标代入函数解析式计算求出b、c的值,即可得解;
(2)先求出抛物线的顶点坐标,再根据向右平移横坐标加,求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线BC的解析式,再求出与x轴的交点D的坐标,过点A作AH⊥BD于H,先求出OD,再利用勾股定理列式求出BD,然后求出△ADH和△BDO相似,利用相似三角形对应边成比例列式求出AH,再利用勾股定理,然后根据锐角的正弦等于对边比斜边列式计算即可得解;
(3)过点C作CP⊥x轴于P,分别求出∠BAO和∠COP的正切值,根据正切值相等求出∠BAO=∠COP,再根据同位角相等,两直线平行解答.
试题解析:(1)由题意得, ?2×9?3b+c=0 c=6  ,
解得 b=?4 c=6  ,
所以,此二次函数的解析式为y=-2x2-4x+6;
(2)∵y=-2x2-4x+6=-2(x+1)2+8,
∴函数y=2x2-4x+6的顶点坐标为(-1,8),
∴向右平移5个单位的后的顶点C(4,8),
设直线BC的解析式为y=kx+b(k≠0),

解得
所以,直线BC的解析式为y=x+6,
令y=0,则x+6=0,
解得x=-12,
∴点D的坐标为(-12,0),
过点A作AH⊥BD于H,
OD=12,BD=
AD=-3-(-12)=-3+12=9,
∵∠ADH=∠BDO,∠AHD=∠BOD=90°,
∴△ADH∽△BDO,
∴AH:OB ="AD:BD" ,
即AH:6 =9:
解得AH=
∵AB=
∴sin∠ABD=
(3)过点C作CP⊥x轴于P,
由题意得,CP=8,PO=4,AO=3,BO=6,
∴tan∠COP==2,
tan∠BAO==2,
∴tan∠COP=tan∠BAO,
∴∠BAO=∠COP,
∴AB∥OC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+3的图象过点A(-1,0),对称轴为过点(1,0)且与y轴平行的直线.

(1)求点B的坐标
(2)求该二次函数的关系式;
(3)结合图象,解答下列问题:
①当x取什么值时,该函数的图象在x轴上方?
②当-1<x<2时,求函数y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=的图像经过B、C两点.

(1)求该二次函数的解析式;
(2)结合函数的图像探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).
(1)求y与x之间的函数关系式,自变量x的取值范围;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动,设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将函数变形为的形式,正确的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案