Èçͼ£¬Ò»´Îº¯Êýy="-12" x+4µÄͼÏó½»xÖáÓÚµãA£¬½»Õý±ÈÀýº¯Êýy=xµÄͼÏóÓÚµãB£®¾ØÐÎCDEFµÄ±ßDCÔÚxÖáÉÏ£¬DÔÚCµÄ×ó²à£¬EFÔÚxÖáÉÏ·½£¬DC=2£¬DE=4£®µ±µãC×ø±êΪ£¨-2£¬0£©Ê±£¬¾ØÐÎCDEF¿ªÊ¼ÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÑØxÖáÏòÓÒÔ˶¯£¬Ô˶¯Ê±¼äΪtÃ룮

£¨1£©ÇóµãBµÄ×ø±ê£®
£¨2£©¾ØÐÎCDEFÔ˶¯tÃëʱ£¬Ö±½Óд³öC¡¢DÁ½µãµÄ×ø±ê£®
£¨3£©µ±µãBÔÚ¾ØÐÎCDEFµÄÒ»±ßÉÏʱ£¬ÇótµÄÖµ£®
£¨4£©ÉèCF¡¢DE·Ö±ð½»ÕÛÏßOBAÓÚM¡¢NÁ½µã£¬µ±ËıßÐÎMCDNΪֱ½ÇÌÝÐÎʱ£¬ÇótµÄÈ¡·¶Î§£®
p;¡¾´ð°¸¡¿£¨1£©µãBµÄ×ø±êΪ£¨2£¬3£©
£¨2£©C¡¢DÁ½µãµÄ×ø±êΪ£º£¨-2+2t£¬0£©£¨-4+2t£¬0£©
£¨3£©t=3      £¨4£©tµÄȡֵ·¶Î§ÊÇ£º2£¼t£¼5£®½âÎö:
p;¡¾½âÎö¡¿½â£º£¨1£©ÓÉ y= x       y=-x+4  £¬
½âµÃ£º x="2" y=3  £®
¡àµãBµÄ×ø±êΪ£¨2£¬3£©£®
£¨2£©¡ß¾ØÐÎCDEF¿ªÊ¼ÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÑØxÖáÏòÓÒÔ˶¯£¬Ô˶¯Ê±¼äΪtÃ룮
¡àC¡¢DÁ½µãµÄ×ø±êΪ£º£¨-2+2t£¬0£©£¨-4+2t£¬0£©£®
£¨3£©µ±BµãÔÚCFÉÏʱ£¬Ôò
-2+2t=2£¬
t=2£®
µ±BÔÚEDÉÏʱ£¬Ôò
-4+2t=2£¬
t=3£®
£¨4£©¸ù¾ÝÌâÒâµÃ£¬µ±DµãÔÚµãO´¦Ê±£¬t=2£¬
µ±µãCÔÚA´¦Ê±£¬t=5£¬
ÓÖ¡ßµ±DCÔÚOAÖ®¼äÔ˶¯Ê±£¬
ËıßÐÎMCDNΪֱ½ÇÌÝÐΣ®
¡àtµÄȡֵ·¶Î§ÊÇ£º2£¼t£¼5£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Ò»´Îº¯Êýy=kx+2µÄͼÏóÓë·´±ÈÀýº¯Êýy=
m
x
µÄͼÏó½»ÓÚµãP£¬µãPÔÚµÚÒ»ÏóÏÞ£®PA¡ÍxÖáÓÚµãA£¬PB¡ÍyÖáÓÚµãB£®Ò»´Îº¯ÊýµÄͼÏó·Ö±ð½»xÖá¡¢yÖáÓÚµãC¡¢D£¬ÇÒS¡÷PBD=4£¬
OC
OA
=
1
2
£®
£¨1£©ÇóµãDµÄ×ø±ê£»
£¨2£©ÇóÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨3£©¸ù¾ÝͼÏóд³öµ±x£¾0ʱ£¬Ò»´Îº¯ÊýµÄÖµ´óÓÚ·´±ÈÀýº¯ÊýµÄÖµµÄxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖª£¬Èçͼ£¬Ò»´Îº¯Êýy1=-x-1Óë·´±ÈÀýº¯Êýy2=-
2
x
ͼÏóÏཻÓÚµãA£¨-2£¬1£©¡¢B£¨1£¬-2£©£¬Ôòʹy1£¾y2µÄxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢x£¾1
B¡¢x£¼-2»ò0£¼x£¼1
C¡¢-2£¼x£¼1
D¡¢-2£¼x£¼0»òx£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢Èçͼ£¬Ò»´Îº¯Êýy=kx+b£¨k£¼0£©µÄͼÏó¾­¹ýµãA£®µ±y£¼3ʱ£¬xµÄȡֵ·¶Î§ÊÇ
x£¾2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³É¶¼£©Èçͼ£¬Ò»´Îº¯Êýy1=x+1µÄͼÏóÓë·´±ÈÀýº¯Êýy2=
kx
£¨kΪ³£Êý£¬ÇÒk¡Ù0£©µÄͼÏó¶¼¾­¹ýµã
A£¨m£¬2£©
£¨1£©ÇóµãAµÄ×ø±ê¼°·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©½áºÏͼÏóÖ±½Ó±È½Ï£ºµ±x£¾0ʱ£¬y1ºÍy2µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Ò»´Îº¯Êýy=x+3µÄͼÏóÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢µãB£¬Óë·´±ÈÀýº¯Êýy=
4x
(x£¾0)
µÄͼÏó½»ÓÚµãC£¬CD¡ÍxÖáÓÚµãD£¬ÇóËıßÐÎOBCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸