精英家教网 > 初中数学 > 题目详情
21、已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.
求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.
分析:(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF≌△CDE.
(2)有(1)中的全等关系,可得出∠AFE=∠CED,再结合△DEF是等边三角形,可知∠DEF=60°,从而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等边三角形.
解答:证明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量代换).(1分)
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).(2分)
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).(4分)

(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),
△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角对等边).(6分)
∴△ABC是等边三角形(等边三角形的判定).(7分)
点评:本题利用了等量加等量和相等,全等三角形的判定和性质,还有三角形的外角等不相邻的两个内角之和,等边三角形的判定(三个角都是60°,那么就是等边三角形).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,延长⊙O的直径AB到点C,过点C作⊙O的切线CE与⊙O相切于点D,AE⊥EC交⊙精英家教网O于点F,垂足为点E,连接AD.
(1)若CD=2,CB=1,求⊙O直径AB的长;
(2)求证:AD2=AC•AF.

查看答案和解析>>

科目:初中数学 来源:江苏中考真题 题型:证明题

已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形。
求证:(1)△AEF≌△CDE;
(2)△ABC为等边三角形。

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,延长的各边,使得,顺次连接,得到为等边三角形.

求证:(1);(2)为等边三角形.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2004•茂名)已知:如图,延长⊙O的直径AB到点C,过点C作⊙O的切线CE与⊙O相切于点D,AE⊥EC交⊙O于点F,垂足为点E,连接AD.
(1)若CD=2,CB=1,求⊙O直径AB的长;
(2)求证:AD2=AC•AF.

查看答案和解析>>

同步练习册答案