精英家教网 > 初中数学 > 题目详情

 如图,OE是∠AOB的平分线, AC⊥OB于点C, BD⊥OA于点D,则关于

直线OE对称的三角形有        对.

D  解析:如答图所示.

    ∵△ACB是等腰直角三角形,

    ∴∠CAB=∠B=45°.

    在Rt△CAD中,∵CD=AD,

    ∴∠CAD=30°,

    ∴∠DAB=45°-30°=15°.

提示:在直角三角形中,若一条直角边等于斜边的一半,则这条直角边所对的角为30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知OE是∠AOB的平分线,CD∥OB,∠ACD=40°,则∠CDE的度数为(  )
A、160°B、150°C、140°D、130°

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
精英家教网
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
1
3
∠AOB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于
1
2
CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OE是∠AOB的平分线,CD∥OB于C,交OE于D,∠ACD=50°,求∠CDE的度数.

查看答案和解析>>

同步练习册答案