精英家教网 > 初中数学 > 题目详情
列方程或方程组解应用题:
小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.
考点:分式方程的应用
专题:
分析:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.
解答:解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得
108
x+0.54
=
27
x

解得:x=0.18
经检验x=0.18为原方程的解
答:纯电动汽车每行驶1千米所需的电费为0.18元.
点评:此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)计算:(x-1)2+2(1+x);
(2)解分式方程:
2
x-4
=
1
x+1

查看答案和解析>>

科目:初中数学 来源: 题型:

黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.
(1)求BE的长;
(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=
6
x
(x>0)和y=
k
x
(x<0)的图象交于点P、点Q.
(1)求点P的坐标;
(2)若△POQ的面积为8,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为
 
m.

查看答案和解析>>

同步练习册答案