如图,已知矩形ABCD,AB=
,BC=3,在BC上取两点E、F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE、PF分别交AC于点G、H.
![]()
(1)求△PEF的边长;
(2)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有什么数量关系?并证明你猜想的结论.
(1)2(2)
,证明见解析
【解析】解: (1)过
作
于
![]()
矩形![]()
,即
,又![]()
………………1分
是等边三角形
![]()
在
中
![]()
的边长为
. ……………………………3分
与
的数量关系是:
………4分
在
中,![]()
![]()
![]()
…………………………………5分
是等边三角形
……………………………6分
![]()
![]()
![]()
…………………………………………8分
![]()
……………………………………………9分
(1)要求△PEF的边长,需构造直角三角形,那么就过P作PQ⊥BC于Q.利用∠PFQ的正弦值可求出PF,即△PEF的边长;
(2)猜想:PH-BE=1.利用∠ACB的正切值可求出∠ACB的度数,再由∠PFE=60°,可得出△HFC是等腰三角形,因此就有BE+EF+CF=BE+PH+2FH=3.再把其中FH用PH表示,化简即可.
科目:初中数学 来源: 题型:
| 45 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 1 |
| 2 |
| 9 |
| 8 |
| 4 |
| 9 |
| 4 |
| 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com