精英家教网 > 初中数学 > 题目详情
28、已知关于x的方程x2-2(m+1)x+m2-2m-3=0…①的两个不相等实数根中有一个根为0.是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0…②的两个实数根x1,x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由.
分析:本题先要从第一个方程的判别式及有一个根为0出发,确定实数m的值,然后将m的值代入第二个方程并将其化简,再利用根与系数的关系根据题意看看能否找出k的值.
解答:解:把x=0代入得m2-2m-3=0.
解得m=3或-1.
∵方程有两个不相等实数根.
∴[-2(m+1)]2-4×(m2-2m-3)>0.
解得m>-1.
∴m=3.
∵x1,x2之差的绝对值为1.
∴(x1-x22=1.
∴(x1+x22-4x1x2=1.
(k-3)2-4(-k+4)=1.
解得k1=-2,k2=4.
∵当k=-2时,△=[-(k-3)]2-4(-k+4)
=k2-2k-7
=(-2)2-2×(-2)-7
=1>0
当k=4时,△=k2-2k-7=42-2×4-7=1>0.
∴存在实数k=-2或4,使得方程②的两个实数根之差的绝对值为1.
点评:本题是一个探索存在性问题,利用判别式和根与系数的关系,按照题意直接推理是解这类问题的基本方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案