精英家教网 > 初中数学 > 题目详情

作业宝如图中点P的坐标可能是


  1. A.
    (-5,3)
  2. B.
    (4,3)
  3. C.
    (5,-3)
  4. D.
    (-5,-3)
D
分析:根据点P在第三象限解答.
解答:(-5,3)、(4,3)、(5,-3)、(-5,-3)中只有(-5,-3)在第三象限,
所以,点P的坐标可能是(-5,-3).
故选D.
点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O为原点建立平面直角坐标系,点D为线段BC的中点,动点P从点A出发,以每秒4个单位的速度,沿折线AOCD向终点C运动,运动时间是t秒.
(1)D点的坐标为
 

(2)当t为何值时,△APD是直角三角形;
(3)如果另有一动点Q,从C点出发,沿折线CBA向终点A以每秒5个单位的速度与P点同时运动,当一点到达终点时,两点均停止运动,问:P、C、Q、A四点围成的四边形的面积能否为28?如果可能,求出对应的t;如果不可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,
①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,
①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求精英家教网出相应的t的值和P、Q的坐标;如不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC中,∠A=∠B=30°,AB=2
3
,把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1)当点B在第一象限,纵坐标是
6
2
时,求点B的横坐标;
(2)如果抛物线y=ax2+bx+c(a≠0)的对称轴经过点C,请你探究:
①当a=
5
4
,b=-
1
2
,c=-
3
5
5
时,A,B两点是否都在这条抛物线上?并说明理由;
②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直精英家教网接写出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜兴市二模)如图,已知正方形OABC的两个顶点坐标分别是A(2,0),B(2,2).抛物线y=
1
2
x2-mx+
1
2
m2(m≠0)的对称轴交x轴于点P,交反比例函数y=
k
x
(k>0)图象于点Q,连接OQ.
(1)求抛物线的顶点坐标(用含m的代数式表示);
(2)当m=
1
2
k=2时,求证:△OPQ为等腰直角三角形;
(3)设反比例函数y=
k
x
(k>0)图象交正方形OABC的边BC、BA于M、N两点,连接AQ、BQ,有S△ABQ=4S△APQ
①当M为BC边的中点时,抛物线能经过点B吗?为什么?
②连接OM、ON、MN,试分析△OMN有可能为等边三角形吗?若可能,试求m+2k的值;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案