精英家教网 > 初中数学 > 题目详情
如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧
BC
上的一点,已知∠BAC=80°,则∠BDC=
50
50
度.(直接写答案)
分析:连接OB,OC,由AB与AC为圆O的切线,根据切线的性质得到AB垂直于OB,AC垂直于OC,在四边形ABOC中,由∠BAC的度数,以及两个角为直角,利用四边形的内角和定理求出∠BOC的度数,再利用同弧所对的圆周角等于所对圆心角的一半,可得出所求角的度数.
解答:解:连接OB,OC,如图所示:

∵AB,AC分别为圆O的切线,
∴AB⊥OB,AC⊥OC,
∴∠ABO=∠ACO=90°,又∠BAC=80°,
∴∠BOC=360°-(∠ABO-∠ACO-∠BAC)=100°,
又圆心角∠BOC与圆周角∠BDC都对弧
BC

∴∠BDC=
1
2
∠BOC=50°.
故答案为:50
点评:此题考查了切线的性质,四边形的内角和定理,以及圆周角定理,遇到切线,常常连接圆心与切点,根据切线性质构造直角三角形来解决问题,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接OB,OC,在⊙O外作∠BAD=∠BAO,A精英家教网D交OB的延长线于点D.
(1)在图中找出一对全等三角形,并进行证明;
(2)如果⊙O的半径为3,sin∠OAC=
12
,试求切线AC的长;
(3)试说明:△ABD分别是由△ABO,△ACO经过哪种变换得到的.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB、AC是⊙O的切线,且∠A=54°,则∠BDC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB,AC是圆的两条弦,AD是圆的一条直径,且BC⊥AD,下列结论中不一定正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB和AC是等腰△ABC的两腰,CD和BE是两腰上的高,CD和BE相交于点F.
(1)在不增加辅助线的前提下,这个图形中共有哪几对全等三角形?请一一写出.
(2)请你在(1)的结论中选择一个说明理由.

查看答案和解析>>

同步练习册答案