精英家教网 > 初中数学 > 题目详情
如图,
(1)在图1中,猜想:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=
 
度.并试说明你猜想的理由.
(2)如果把图1称为2环三角形,它的内角和为:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2
图2称为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2
图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1++∠A2+∠B2+∠C2+∠D2+∠E2
请你猜一猜,2环n边形的内角和为
 
度(只要求直接写出结论).
考点:多边形内角与外角,三角形内角和定理
专题:规律型
分析:(1)连结B1B2,可得∠A2+∠C1=∠B1B2A2+∠B2B1C1,再根据四边形的内角和公式即可求解;
(2)A1A2之间添加两条边,可得B2+∠C2+∠D2=∠EA1D+∠A1EA2+∠EA2B2,再根据边形的内角和公式即可求解;2环n边形添加(n-2)条边,再根据边形的内角和公式即可求解.
解答:解:(1)连结B1B2

则∠A2+∠C1=∠B1B2A2+∠B2B1C1
∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=∠A1+∠B1+∠B1B2A2+∠B2B1C1+∠B2+∠C2=360度;
(2)如图,A1A2之间添加两条边,

可得B2+∠C2+∠D2=∠EA1D+∠A1EA2+∠EA2B2
则∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2=∠A1+∠B1+∠C1+∠D1+∠A2+∠EA1D+∠A1EA2+∠EA2B2=720°;
2环n边形添加(n-2)条边,2环n边形的内角和成为(2n-2)边形的内角和.其内角和为180(2n-4)=360(n-2)度.
故答案为:(1)360;(2)360(n-2)
点评:考查了多边形内角和定理:(n-2)•180° (n≥3)且n为整数).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,以AB为直径的⊙O交BC于点P,且P为BC中点,PD⊥AC于点D.
(1)求证:AB=AC;
(2)求证:PD是⊙O的切线;
(3)若∠CAB=120°,BC=4,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB<AC,AD是BC边上的高,AE是角平分线,
(1)若∠B=45°,∠C=35°,则∠DAE=
 

(2)若∠B=70°,∠C=40°,则∠DAE=
 

(3)由(1)、(2)你能猜想出∠DAE与∠B、∠C之间的关系为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点A(3,2)和点E是正比例函数y=ax与反比例函数y=
k
x
的图象的两个交点.
(1)填空:点E坐标:
 
;不等式ax>
k
x
的解集为
 

(2)求正比例函数和反比例函数的关系式;
(3)P(m,n)是函数y=
k
x
图象上的一个动点,其中0<m<3.过点P作PB⊥y轴于点B,过点A作AC⊥x轴于点C,直线PB、AC交于点D.当P为线段BD的中点时,求△POA的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

四边形OABC为正方形,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,建立平面直角坐标系,如图1,已知四边形OABC周长为32.
(1)求A、B、C三点坐标;
(2)一条与y轴重合的直线m,从y轴出发,以每秒1个单位长度的速度向右平移,平移至与直线BC重合时停止平移,设移动时间为t秒,在平移过程中,设直线m与线段OC交于点D,与线段AB交于点E,当长方形DOAE的面积等于长方形BCDE面积的3倍时,(如图2),求t值;
(3)在(2)的条件下,设M是直线m上一点,连接AM、BM.若AM⊥BM,求∠OAM+∠CBM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

某企业500名员工参加安全知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:

(1)求这次抽样调查的样本容量,并补全图①;
(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数;
(3)在成绩为C级的5人中有两人为小明和小刚,公司准备从这5人中随机抽调两人参加外出培训,请问小明和小刚同时被抽调的概率是多少?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司营销A,B两种产品,根据市场调研,发现如图信息:根据如图信息,解答下列问题:
(1)求二次函数解析式;
(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?

查看答案和解析>>

同步练习册答案