精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.

(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.

【答案】
(1)证明:如图1,

∵EN∥AD,

∴∠MAD=∠MNE,∠ADM=∠NEM.

∵点M为DE的中点,

∴DM=EM.

在△ADM和△NEM中,

∴△ADM≌△NEM.

∴AM=MN.

∴M为AN的中点


(2)证明:如图2,

∵△BAD和△BCE均为等腰直角三角形,

∴AB=AD,CB=CE,∠CBE=∠CEB=45°.

∵AD∥NE,

∴∠DAE+∠NEA=180°.

∵∠DAE=90°,

∴∠NEA=90°.

∴∠NEC=135°.

∵A,B,E三点在同一直线上,

∴∠ABC=180°﹣∠CBE=135°.

∴∠ABC=∠NEC.

∵△ADM≌△NEM(已证),

∴AD=NE.

∵AD=AB,

∴AB=NE.

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN为等腰直角三角形


(3)证明:△ACN仍为等腰直角三角形.

证明:如图3,延长AB交NE于点F,

∵AD∥NE,M为中点,

∴易得△ADM≌△NEM,

∴AD=NE.

∵AD=AB,

∴AB=NE.

∵AD∥NE,

∴AF⊥NE,

在四边形BCEF中,

∵∠BCE=∠BFE=90°

∴∠FBC+∠FEC=360°﹣180°=180°

∵∠FBC+∠ABC=180°

∴∠ABC=∠FEC

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN为等腰直角三角形.


【解析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中,

(1)请写出ABC各点的坐标。

(2)求出SABC

(3)若把ABC向上平移2个单位,再向右平移2个单位得ABC,在图中画出ABC变化位置,并写出A′、B′、C的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上表示数-12018的两点分别为AB,则AB两点之间的距离为( )

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).

(1)求反比例函数和一次函数的表达式;

(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件中,是随机事件的是(  )

A.任意画两个圆,这两个圆是等圆B.⊙O的半径为5OP3,点P⊙O

C.直径所对的圆周角为直角D.不在同一条直线上的三个点确定一个圆

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如678131415202122).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和可能为下列数中的(

A. 81 B. 100 C. 108 D. 216

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】01-2-3这四个数中,最小的数是(

A. -2B. -3C. 0D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算3a+2﹣4a﹣5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一只甲虫在5×5的方格(每个小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫.规定:向上、向右走为正,向下、向左走为负.如果从AB记为:A→B(+1,+4),从BA记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.

(1)图中B→C(____,____),C→____(+1,____);

(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.

查看答案和解析>>

同步练习册答案