精英家教网 > 初中数学 > 题目详情
(2012•鞍山)如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=
12
,则∠D的度数是
30°
30°
分析:由圆周角定理、特殊角的三角函数值求得∠CAB=30°;然后根据直角三角形的两个锐角互余的性质、等腰三角形的性质、对顶角相等求得∠EOD=∠COB=60°;最后在直角三角形ODE中求得∠D的度数.
解答:解:∵AB为⊙O直径,
∴∠ACB=90°(直径所对的圆周角是直角);
又∵sinA=
1
2

∴∠CAB=30°,
∴∠ABC=60°(直角三角形的两个锐角互余);
又∵点O是AB的中点,
∴OC=OB,
∴∠OCB=OBC=60°,
∴∠COB=60°,
∴∠EOD=∠COB=60°(对顶角相等);
又∵DE⊥AB,
∴∠D=90°-60°=30°.
故答案是:30°.
点评:本题综合考查了圆周角定理、特殊角的三角函数值.解题时,注意“直角三角形斜边上的中线等于斜边的一半”这一知识点的利用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•鞍山)如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是
25°
25°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.(
3
≈1.732,结果保留三个有效数字).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=
13
,延长OE到点F,使EF=2OE.
(1)求⊙O的半径;
(2)求证:BF是⊙O的切线.

查看答案和解析>>

同步练习册答案