精英家教网 > 初中数学 > 题目详情
(2013•南通一模)某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.
时间x(天) 0 4 8 12 16 20
销量y1(万朵) 0 16 24 24 16 0
另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 关系如图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;
(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;
(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.
分析:(1)先判断出y1与x之间是二次函数关系,然后设y1=ax2+bx+c(a≠0),然后取三组数据,利用待定系数法求二次函数解析式解答;
(2)销售量增加,从降价促销上考虑,然后分两段利用待定系数法求一次函数解析式解答;
(3)分①0≤x≤8时,②8<x≤20时两种情况,根据总销售量y=y1+y2,整理后再根据二次函数的最值问题解答.
解答:解:(1)由图表数据观察可知y1与x之间是二次函数关系,
设y1=ax2+bx+c(a≠0),
c=0
16a+4b+c=16
64a+8b+c=24

解得
a=-
1
4
b=5
c=0

故y1与x函数关系式为y1=-
1
4
x2+5x(0≤x≤20);

(2)销售8天后,该花木公司采用了降价促销(或广告宣传)的方法吸引了淘宝买家的注意力,日销量逐渐增加;
当0≤x≤8,设y=kx,
∵函数图象经过点(8,4),
∴8k=4,
解得k=
1
2

所以,y=
1
2
x,
当8<x≤20时,设y=mx+n,
∵函数图象经过点(8,4)、(20,16),
8m+n=4
20m+n=16

解得
m=1
n=-4

所以,y=x-4,
综上,y2=
1
2
x(0≤x≤8)
x-4(8<x≤20)


(3)当0≤x≤8时,
y=y1+y2
=
1
2
x-
1
4
x2+5x
=-
1
4
(x2-22x+121)+
121
4

=-
1
4
(x-11)2+
121
4

∵抛物线开口向下,x的取值范围在对称轴左侧,y随x的增大而增大,
∴当x=8时,y有最大值,y最大=-
1
4
(8-11)2+
121
4
=28;
当8<x≤20时,y=y1+y2=x-4-
1
4
x2+5x,
=-
1
4
(x2-24x+144)+32,
=-
1
4
(x-12)2+32,
∵抛物线开口向下,顶点在x的取值范围内,
∴当x=12时,y有最大值为32,
∴该花木公司销售第12天,日销售总量最大,最大值为32万朵.
点评:本题考查了二次函数的性质在实际生活中的应用.最大销售量的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-
b
2a
时取得.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南通一模)下列计算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)体育课上训练毽球,小明记录了自己6次练习的成绩,数据如下:13、11、13、10、13、12,则这组数据的众数是
13
13

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线与点E,连接AE.
(1)求证:AE与⊙O相切;
(2)连接BD并延长交AE于点F,若EC∥AB,OA=6,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

同步练习册答案