精英家教网 > 初中数学 > 题目详情
2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是(  )
A.∠BAC=∠DCAB.∠BAC=∠DACC.∠BAC=∠ABDD.∠BAC=∠ADB

分析 由矩形和菱形的判定方法即可得出答案.

解答 解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;
B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;
C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;
D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;
故选:C.

点评 本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:
(1)求我省2016年谷子的种植面积是多少万亩.
(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是(  )
A.5000.3B.4999.7C.4997D.5003

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-2),B(-2,-4),C(-4,-1).
(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;
(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲   78  86  74  81  75  76  87  70  75  90  75  79  81  70  74  80  86  69  83  77
乙   93  73  88  81  72  81  94  83  77  83  80  81  70  81  73  78  82  80  70  40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩x
人数
部门
40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100
0011171
100710
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门平均数中位数众数
78.377.575
7880.581
得出结论:a.估计乙部门生产技能优秀的员工人数为240;b.可以推断出甲或乙部门员工的生产技能水平较高,理由为①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;
②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.
或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;
②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高..(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是80万元.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列各数中比1大的数是(  )
A.2B.0C.-1D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.图中立体图形的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).

查看答案和解析>>

同步练习册答案