45.6
分析:利用三角形的面积与边长之间的关系,求出阴影部分面积与三角形ABC的关系,代入阴影部分的面积即可求出△ABC的面积.
解答:

解:如图所示,连接AQ,则有△ABQ.
∵BQ=

BC,
∴S
△ABQ=

S
△ABC,又AP=

AB,
∴S
△PBQ=

S
△ABQ=

×

S
△ABC=

S
△ABC.
连接BR,
∵RC=

AC,
∴S
△BCR=

S
△ABC,
又∵BQ=

BC,
∴S
△QCR=

S
△BCR=

S
△ABC.
连接CP,
∵AP=

AB,
∴S
△ACP=

S
△ABC,
又∵RC=

AC,
∴S
△APR=

S
△ACP=

S
△ABC.
即:S
△PBQ+S
△QCR+S
△APR=(

+

+

)S
△ABC=

S
△ABC,
S
阴影△PQR=(1-

)S
△ABC=

S
△ABC=19,
∴S
△ABC=

×19=45.6(平方厘米).
故答案为45.6.
点评:本题主要考查了三角形面积公式的灵活应用,关键在于找出阴影部分的面积与△ABC的面积之间的关系.