精英家教网 > 初中数学 > 题目详情
如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.
小题1:在图(3)正方形ABCD内画一个半等角点P,且满足α≠β;
小题2:在图(4)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法);
小题3:若四边形ABCD有两个半等角点P1、P2(如图(2)),证明线段P1P2上任一点也是它的半等角点.

小题1:所画的点P在AC上且不是AC的中点和AC的端点.(2分)
小题2:画点B关于AC的对称点B’,延长DB’交AC于点P,点P为所求(不写文字说明不扣分).(3分)
小题3:连P1A、P1D、P1B、P1C和P2D、P2B,根据题意,

∠AP1D=∠AP1B,∠DP1C=∠BP1C,
∴∠AP1B+∠BP1C=180度.
∴P1在AC上,
同理,P2也在AC上.
在△DP1P2和△BP1P2中,
∠DP2P1=∠BP2P1,∠DP1P2=∠BP1P2,P1P2公共,
∴△DP1P2≌△BP1P2
所以DP1=BP1,DP2=BP2,于是B、D关于AC对称.
设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC,
所以点P是四边形的半等角点.(5分)
(1)根据题意可知,所画的点P在AC上且不是AC的中点和AC的端点.因为在图形内部,所以不能是AC的端点,又由于α≠β,所以不是AC的中点.
(2)画点B关于AC的对称点B’,延长DB’交AC于点P,点P为所求.(因为对称的两个图形完全重合)
(3)先连P1A、P1D、P1B、P1C和P2D、P2B,根据题意∠AP1D=∠AP1B,∠DP1C=∠BP1C∴∠AP1B+∠BP1C=180度.∴P1在AC上,同理,P2也在AC上,再利用ASA证明△DP1P2≌△BP1P2而,那么△P1DP2和△P1BP2关于P1P2对称,P是对称轴上的点,所以∠DPA=∠BPA,∠DPC=∠BPC.即点P是四边形的半等角点
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,是原点,三点的坐标分别
,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.
小题1:求直线的解析式.
小题2:设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.
小题3:设从出发起,运动了秒.当两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AD∥BC,∠DCB=45°,CD =2,BD⊥CD .过点C作CE⊥AB于E,交对角线BD于F.点G为BC中点,连结EG、AF.
小题1:求EG的长
小题2:求证:CF =AB +AF

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在□ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则BC的长为(   )
A.4cmB.5cm
C.6cmD.8cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(10),梯形中,,点是边的中点, 连结于点的延长线交的延长线于点

小题1:求证:
小题2:若,求线段的长

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,上两点,且.求证:

小题1:
小题2:四边形是矩形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,有一个菱形BFDE(点E、F分别在线段AB、CD上),记它们的面积分别为. 现给出下列命题:

①若,则;②若,则DF=2AD.
那么,下面判断正确的是(   )
A.①是真命题,②是真命题        B.①是真命题,②是假命题
C.①是假命题,②是真命题             D.①假真命题,②假真命题

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连结AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是        (  ▲  )

A.14cm    B.18cm    C.24cm    D.28cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片               张,B类卡片              张,C类卡片               张,请你在右下角的大矩形中画出一种拼法。

查看答案和解析>>

同步练习册答案