【题目】如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=,求⊙O半径的长.
【答案】(1)证明见解析;(2)3.
【解析】
试题分析:(1)本题可连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果;
(2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果.
试题解析:(1)连接OD,
∵PD切⊙O于点D,
∴OD⊥PD,
∵BE⊥PC,
∴OD∥BE,
∴ADO=∠E,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠E,
∴AB=BE;
(2)由(1)知,OD∥BE,
∴∠POD=∠B,
∴cos∠POD=cosB=,
在Rt△POD中,cos∠POD=,
∵OD=OA,PO=PA+OA=2+OA,
∴,
∴OA=3,
∴⊙O半径=3.
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41, =1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入120元记作+120元,那么-100元表示( ).
A. 支出20元 B. 收入20元 C. 支出100元 D. 收入100元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( )
A. 7.6×108克 B. 7.6×10﹣7克 C. 7.6×10﹣8克 D. 7.6×10﹣9克
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com