(1)证明:∵BE⊥CE于E,AD⊥CE于D,∠ACB=90°,
∴∠E=∠ADC=90°,∠BCE=90°-∠ACD,∠CAD=90°-∠ACD,
∴∠BCE=∠CAD
在△BCE与△CAD中,
∠E=∠ADC,∠BCE=∠CAD,BC=AC
∴△CEB≌△ADC(AAS)
(2)解:∵△CEB≌△ADC,
∴BE=DC,CE=AD,
又∵AD=9
∴CE=AD=9,DC=CE-DE=9-6=3,
∴BE=DC=3(cm),
∵∠E=∠ADF=90°,∠BFE=∠AFD,
∴△BFE∽△AFD,
∴

,即有

解得:EF=

(cm).
∴BE=3cm,EF=

cm.
分析:(1)由同角的余角相等可得∠BCE=∠CAD,而BC=AC,∠E=∠CDA=90°,故有△CEB≌△ADC;
(2)由(1)知BE=DC,CE=AD,有CE=AD=9,DC=CE-DE=3,BE=DC=3,可证得△BFE∽△AFD,有

故可求得EF的值.
点评:本题考查了全等三角形的判定和性质和相似三角形的判定和性质.