精英家教网 > 初中数学 > 题目详情

【题目】如图,PB为O的切线,B为切点,直线PO交于点E、F,过点B作PO的垂线BA,垂足为点D,交O于点A,延长AO与O交于点C,连接BC,AF.

(1)求证:直线PA为O的切线;

(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;

(3)若BC=6,tanF=,求cosACB的值和线段PE的长.

【答案】(1)证明见解析(2)EF2=4ODOP,证明见解析(3)

【解析】解:(1)连接OB,

PB是O的切线,∴∠PBO=90°。

OA=OB,BAPO于D,

AD=BD,POA=POB。

PO=PO,∴△PAO≌△PBO(SAS)。

∴∠PAO=PBO=90°。直线PA为O的切线。

(2)EF2=4ODOP。证明如下:

∵∠PAO=PDA=90°,∴∠OAD+AOD=90°,OPA+AOP=90°。

∴∠OAD=OPA。∴△OAD∽△OPA,,即OA2=ODOP。

EF=2OA,EF2=4ODOP。

(3)OA=OC,AD=BD,BC=6,OD=BC=3(三角形中位线定理)。

设AD=x,

tanF=FD=2x,OA=OF=2x﹣3。

在RtAOD中,由勾股定理,得(2x﹣3)2=x2+32

解得,x1=4,x2=0(不合题意,舍去)。AD=4,OA=2x﹣3=5。

AC是O直径,∴∠ABC=90°。

AC=2OA=10,BC=6,cosACB=

OA2=ODOP,3(PE+5)=25PE=

(1)连接OB,根据垂径定理的知识,得出OA=OB,POA=POB,而证明PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论

(2)先证明OAD∽△OPA,相似三角形的性质得出OA与OD、OP的关系,然后将EF=2OA代入关系式即可

(3)根据题意可确定OD是ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在RtAOD中,勾股定理解出x的值,而能求出cosACB,再由(2)可得OA2=ODOP,代入数据即可得出PE的长 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.

(1)请直接写出yx之间的函数关系式;

(2)如果每天获得160元的利润,销售单价为多少元?

(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数 y=ax2+bx+c(a≠0)的图象如图,有下列 5 个结论:①4a+2b+c>0;②abc<0;③b<a+c;④3b>2c;⑤a+b<m(am+b),(m≠1 的实数);其中正确结论的个数为( )

A. 2 个 B. 3 个 C. 4 个 D. 5 个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三角形ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,那么AF、BD、CE的长分别为(  )

A. AF=4,BD=9,CE=5 B. AF=4,BD=5,CE=9

C. AF=5,BD=4,CE=9 D. AF=9,BD=4,CE=5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.

已知:平行四边形ABCD

求作:点M,使点M 为边AB 的中点.

作法:如图,

作射线DA

以点A 为圆心,BC长为半径画弧,

DA的延长线于点E

连接EC AB于点M

所以点M 就是所求作的点.

根据小明设计的尺规作图过程,

(1)使用直尺和圆规,补全图形 (保留作图痕迹)

(2)完成下面的证明.

证明:连接ACEB

四边形ABCD 是平行四边形,

AEBC

AE=

四边形EBCA 是平行四边形( )(填推理的依据)

AM =MB ( )(填推理的依据)

M 为所求作的边AB的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.如图,⊙O是△ABC的内切圆,与三边分别相切于点E、F、G.

(1)求证:内切圆的半径r=1;

(2)求tan∠OAG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B90°EAB上的一点,且AEBC,∠1=∠2

求证:△CED是等腰直角三角形

证明:∵∠1=∠2   

EC   (在一个三角形中,等角对等边)

∵∠A=∠B90°AEBC

∴△AED≌△BCE   

∴∠AED=∠      

∵∠BCE+BEC90°

   +BEC90°(等量代换)

∴∠DEC90°

∴△CED是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABx轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO

(1)求直线AB的解析式;

(2)求三角形AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=12BC=25P是线段AB上一点(点P不与AB重合),将PBC沿直线PC折叠,顶点B的对应点是点GCGPG分别交线段ADEO

1)如图1,若OP=OE,求证:AE=PB

2)如图2,连接BEPC于点F,若BECG

①求证:四边形BFGP是菱形;

②当AE=9,求的值.

查看答案和解析>>

同步练习册答案