分析 根据题意得到kx2+(2k+1)x+2-y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.
解答 解:依题意得kx2+(2k+1)x+2-y=0恒成立,即k(x2+2x)+x-y+2=0恒成立,
则$\left\{\begin{array}{l}{{x}^{2}+2x=0}\\{x-y+2=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$.
所以该抛物线恒过定点(0,2)、(-2,0).
故答案为(0,2)、(-2,0).
点评 本题考查了二次函数图象上点的坐标特征,解析式变形为k(x2+2x)+x-y+2=0是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 甲先到B点 | B. | 乙先到B点 | C. | 丙先到B点 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com