精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,BD为ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.求证:DE=DF.
分析:可通过证明OE=OF,然后根据垂直平分线性质来得出DE=DF,要证明OE=OF,证明三角形BOF和三角形DOE全等即可.
解答:证明:在平行四边形ABCD中,AD∥BC,
∴∠OBF=∠ODE
∵O为BD的中点
∴OB=OD
在△BOF和△DOE中,
∠OBF=∠ODE
OB=OD
∠BOF=∠DOE

∴△BOF≌△DOE
∴OF=OE
∵EF⊥BD于点O
∴DE=DF.
点评:本题考查了平行四边形的性质,垂直平分线的性质,全等三角形的判定等知识点,证明简单的线段相等,一般是通过全等三角形来证明的.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AF∥BC交DB的延长线于点F,AD交BC于精英家教网点E,AE=2,ED=4.
(1)求证:AF是⊙O的切线;
(2)求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD,BC分别交于点E,F.
求证:
(1)△BOF≌△DOE.
(2)DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.
(1)求证:AB2=AE•AD;
(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.

查看答案和解析>>

同步练习册答案