精英家教网 > 初中数学 > 题目详情
16.如图,在扇形AOB中,∠AOB=120°,弦AB=$2\sqrt{3}$,点M是$\widehat{AB}$上任意一点(与端点A、B不重合),ME⊥AB于点E,以点M为圆心,ME长为半径作⊙M,分别过点A、B作⊙M的切线,两切线相交于点C.
(1)求$\widehat{AB}$的长;
(2)试判断∠ACB的大小是否随点M的运动而改变?若不变,请求出∠ACB的大小;若改变,请说明理由.

分析 (1)过点O作OH⊥AB于H,则AH=$\frac{1}{2}$AB=$\sqrt{3}$,根据弧长公式求出结果;
(2)连接AM、BM,根据切线的判定和性质定理推出⊙M是△ABC的内切圆,得到AM、BM是∠CAB、∠ABC的平分线,求出∠AMB=90°+$\frac{1}{2}$∠ACB,由已知条件∠AOB=120,可求得∠AMB=120°,得到∠ACB=60°,求出结果.

解答 解:(1)如图:作OH⊥AB,

则AH=$\frac{1}{2}$AB=$\sqrt{3}$,
易求AO=2,
∴弧AB的长=$\frac{120π•2}{180}$=$\frac{4π}{3}$,
(2)连接AM、BM,
∵ME⊥AB,
∴AB是⊙M的切线,
∵AC、BC是⊙M的切线,
∴⊙M是△ABC的内切圆,
∵AM、BM是∠CAB、∠ABC的平分线,
∴∠AMB=90°+$\frac{1}{2}$∠ACB,
∵∠AOB=120°,
∴∠AMB=120°,
∴∠ACB=60°,
即∠ACB的大小不变,为60°.

点评 本题考查了等腰三角形的性质,弧长的公式,切线的判定和性质,三角形的中位线内切圆的性质,解题的关键是正确的作出辅助线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.一台电脑的成本价为M元,按成本价增加25%定价,为减少积压,现在按定价的85%降价出售,每台电脑的利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度数.
(2)若∠A=m,∠B=n,则∠DCE=$\frac{n-m}{2}$.(直接用m、n表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.直线MN与直线PQ相交于O,点A在射线OP上运动,点B 在射线OM上运动.
(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=50°;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=65°.
(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=90°;
(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF中,如果有一个角是另一个角的4倍,则∠ABO的度数=36°或45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)求证:四边形MPNQ是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,一棵大树在一次强烈的地震中于C处折断倒下,树顶落在地面B处,测得B处与树的底端A相距25米,∠ABC=24°.
(1)求大树折断倒下部分BC的长度;(精确到1米)
(2)问大树在折断之前高多少米?(精确到1米)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图是某种货车自动卸货时的示意图,AC是水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC的夹角为30°,举升杠杆OB与底盘AC的夹角为75°,已知O与A的距离为4米,试求货车卸货时举升杠杆OB的长($\sqrt{2}≈1.414$,精确到0.01米).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,△ABC的∠BAC的平分线AD被EF垂直平分,且E、F分别在AB,AC上,求证:四边形AEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解关于x的方程:ax+b2=bx+a2

查看答案和解析>>

同步练习册答案