精英家教网 > 初中数学 > 题目详情

方程数学公式的解是


  1. A.
    -1或4
  2. B.
    -1
  3. C.
    4
  4. D.
    -4
D
分析:观察方程可得最简公分母是:(x+1)(x-1),两边同时乘最简公分母可把分式方程化为整式方程来解答.
解答:方程两边同乘以x(x+1),
得6-(x2-1)=3(x+1),
x2+3x-4=0
解得x1=-4,x2=1,
∵当x=1时,x(x+1),=0,
所以x=1是增根,应舍去,
∴原方程的解是x=-4.
故选D.
点评:本题考查解分式方程的能力,注意:
(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3.

参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为
1和-7

(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|+|x+4|≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

28、阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;
在解题中,我们会常常运用绝对值的几何意义:
例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;
例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为
1或-7

(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读以下例题,解方程|2x|=1
解:①当2x≥0时,原方程可化为2x=1,它的解是x=
1
2

②当2x<0时,原方程可化为-2x=1,它的解是x=-
1
2

所以原方程的解是x=
1
2
或x=-
1
2

请你模仿上面的例题的解法,解方程|2x-1|=1

查看答案和解析>>

科目:初中数学 来源: 题型:

探究发现
阅读下列解题过程并解答下列问题:
解方程|x+3|=2.
解:①若x+3>0时,原方程可化为一元一次方程x+3=2.∴x=-1;
②若x+3<0时,原方程可化为一元一次方程-(x+3)=2.∴x=-5;
③若x+3=0时,则原式中|0|=2,这显然不成立,∴原方程的解是x=-1或x=-5.
(1)解方程|3x-2|-4=0.
(2)若方程|x-5|=2的解也是方程4x+m=5x+1的解,求m2-4m+4的值.
(3)探究:方程|x+2|=b+1有解的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程|x|-2=0,可以按下面的步骤进行:
解:当x≥0时,得x-2=0.
解这个方程,得x=2.
当x<0时,得-x-2=0.
解这个方程,得x=-2.
所以原方程的解是x=2或x=-2.
仿照上述的解题过程,解方程|x-2|-1=0.

查看答案和解析>>

同步练习册答案