解:在△AED中,∵DE⊥AB于E,
又∵DE:AE=1;5,
∴设DE=x,则AE=5x,
由勾股定理,AD
2=AE
2+ED
2=(5x)
2+x
2=26x
2,
∴AD=

x.
在△ADC中,∵∠C=90°,∠ADC=45°,
∴∠DAC=45°.
由勾股定理,AC
2+DC
2=AD
2=26x
2,
∴AC=DC=

x.
在Rt△BED中,∵ED=x,BE=3,
由勾股定BD
2=ED
2+BE
2=x
2+3
2=x
2+9,
∴BD=

.
在Rt△BED和Rt△BCA中,
∵∠B是公共角,
∠BED=∠BCA=90°,
∴△BED∽△BCA,而AB=3+5x.
∴

.
即

.
解关于x的方程3+5x=

,
两边平方得:(3+5x)
2=13•(x
2+9),
化简得:2x
2+5x-18=0,
即(x-1)(2x+9)=0,
∴x
1=2 x
2=-

.
∵x=ED>0,
∴x=ED=2,AE=5x=10.
∴AB=AE+BE=10+3=13.
∴S
△ABD=

ED•AB=

×2×13=13.
分析:由已知条件可以证明△BED∽△BCA,然后根据其对应边成比例可将DE的长求出来,进而可求出AB的长,根据三角形的面积公式可求出结果.
点评:此题考查解直角三角形、直角三角形性质等知识,也考查逻辑推理能力和运算能力.此题比较难,综合性比较强.