【题目】如图,在中,点在边上,的延长线交于点,下列结论错误的是( )
A. B. C. D.
【答案】B
【解析】
根据平行四边形的性质得出AD=BC,AD∥BC,AB∥CD,根据相似三角形的判定得出△FEC∽△FAD,△AEB∽△FEC,再根据相似三角形的性质得出比例式即可.
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,AB∥CD,
A、∵BC∥AD,
∴△FEC∽△FAD,
∴,
∵AD=BC,
∴,正确,故本选项不符合题意;
B、∵BC∥AD,
∴△FEC∽△FAD,
∴,
∵AD=BC,
∴,
∴错误,故本选项符合题意;
C、∵BC∥AD,
∴△FEC∽△FAD,
∴,
∵AD=BC,
∴,正确,故本选项不符合题意;
D、∵AB∥CD,
∴△AEB∽△FEC,
∴,正确,故本选项不符合题意;
故选:B.
科目:初中数学 来源: 题型:
【题目】在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.
(1)求城门大楼的高度;
(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是( )
A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平面直角坐标系,抛物线与轴交于点A(-2,0)和点B(4,0) .
(1)求这条抛物线的表达式和对称轴;
(2)点C在线段OB上,过点C作CD⊥轴,垂足为点C,交抛物线与点D,E是BD中点,联结CE并延长,与轴交于点F.
①当D恰好是抛物线的顶点时,求点F的坐标;
②联结BF,当△DBC的面积是△BCF面积的时,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明研究一函数的性质,下表是该函数的几组对应值:
在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图像
根据所画函数图像,写出该函数的一条性质: .
根据图像直接写出该函数的解析式及自变量的取值范围: ;
若一次函数与该函数图像有三个交点,则的范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地之间的路程为2480米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是___米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点的坐标为,动点从点出发,沿轴以每秒个单位的速度向上移动,且过点的直线也随之移动,如果点关于的对称点落在坐标轴上,没点的移动时间为,那么的值可以是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
(1)求证:四边形FBGH是菱形;
(2)求证:四边形ABCH是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com