【题目】如图,已知平面直角坐标系,抛物线与轴交于点A(-2,0)和点B(4,0) .
(1)求这条抛物线的表达式和对称轴;
(2)点C在线段OB上,过点C作CD⊥轴,垂足为点C,交抛物线与点D,E是BD中点,联结CE并延长,与轴交于点F.
①当D恰好是抛物线的顶点时,求点F的坐标;
②联结BF,当△DBC的面积是△BCF面积的时,求点C的坐标.
【答案】(1) ,x=1;(2)①F的坐标是(0,);②C坐标是.
【解析】
(1)用待定系数法求解;
(2)①求出顶点坐标,得出DC、OC、BC长度,在Rt△DCB和Rt△OFC中,利用三角函数求出OF值即可;
②通过面积比找到DC与OF比值,证明△DCB∽△FOC,借助比例式求解OB,从而得到OC长.
(1)由题意得,抛物线经过点A(-2,0)和点B(4,0),
代入得 解得
因此,这条抛物线的表达式是.
它的对称轴是直线.
(2)①由抛物线的表达式,得顶点D的坐标是(1,).
∴.
∵D是抛物线顶点,CD⊥轴,E是BD中点,∴. ∴.
∵,∴.
在Rt△中,,.
在Rt△中,,.
∴,.∴点F的坐标是(0,).
②∵,, ∴.
∵△DBC的面积是△BCF面积的, ∴.
由①得,又,
∴△∽△.∴.
又OB=4,∴,∴.即点C坐标是.
科目:初中数学 来源: 题型:
【题目】如图,直线:与轴交于点,与轴交于点,抛物线经过,两点,且与轴交于另一点.
(1)求直线及抛物线的解析式;
(2)点是抛物线上一动点,当点在直线下方的抛物线上运动时,过点作轴交于点,过点作轴交于点,求的最大值;
(3)在(2)的条件下,当的值最大时,将绕点旋转,当点落在轴上时,直接写出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温y(℃)与通电时间x(min)的关系如下图所示,回答下列问题:
(1)当0≤x≤8时,求y与x之间的函数关系式;
(2)求出图中a的值;
(3)某天早上7:20,李老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为推动“时刻听党话 永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:
(1)本次共调查了 名学生;
(2)将图1的统计图补充完整;
(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).如果小正方形的面积是25,大正方形的面积为49,直角三角形中较小的锐角为α,那么tanα的值是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用次;甲、丙两车合运相同次数,运完这批货物,甲车共运吨;乙、丙两车合运相同次数,运完这批货物乙车共运吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费元计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解全区5000名初中毕业生的体重情况,随机抽测了200名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为___人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于点和点两点.
(1)求抛物线的函数表达式;
(2)若点是位于直线上方抛物线上的一动点,当的面积最大时,求此时的面积及点的坐标;
(3)在轴上是否存在点,使是等腰三角形?若存在,直接写出点的坐标(不用说理);若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com