精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线与抛物线相交于点和点两点.

1)求抛物线的函数表达式;

2)若点是位于直线上方抛物线上的一动点,当的面积最大时,求此时的面积及点的坐标;

3)在轴上是否存在点,使是等腰三角形?若存在,直接写出点的坐标(不用说理);若不存在,请说明理由.

【答案】1)所求抛物线的函数表达式为;(2的面积有最大值是,此时点坐标为;(3)存在点坐标为.

【解析】

1)先根据点B在直线y=x+1求出其坐标,再将AB坐标代入抛物线解析式求解可得;
2)作PMx轴于点M,交AB于点N,设点P的坐标为(m-m2+2m+3),点N的坐标为(mm+1),依据SPAB=SPAN+SPBN列出函数解析式,利用二次函数的性质求解可得;
3)设点Q坐标为(n0),结合各点坐标得出QA2=-1-n2QB2=2-n2+9AB2=18,再根据等腰三角形的定义分三种情况分别求解可得.

解(1在直线上,

坐标为

和点在抛物线上,

解得

所求抛物线的函数表达式为

2)过点轴于点,交于点

设点的横坐标为

则点的坐标为

的坐标为

是位于直线上方,

.

的面积

,

抛物线开口向下,又

时,

的面积有最大值,

最大值是.

此时点坐标为

3)存在点坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知平面直角坐标系,抛物线轴交于点A(-20)和点B(40)

1)求这条抛物线的表达式和对称轴;

2)点C在线段OB上,过点CCD轴,垂足为点C,交抛物线与点DEBD中点,联结CE并延长,与轴交于点F

①当D恰好是抛物线的顶点时,求点F的坐标;

②联结BF,当DBC的面积是BCF面积的时,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC的三个顶点都在⊙O上,ABAC,⊙O的半径等于10cm,圆心OBC的距离为6cm,则AB的长等于____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD,∠EAF45°

1)如图,当点EF分别在边BCCD上,连接EF,求证:EFBE+DF

童威同学是这样思考的,请你和他一起完成如下解答:证明:将ADF绕点A顺时针旋转90°,得ABG,所以ADF≌△ABG

2)如图,点MN分别在边ABCD上,且BNDM.当点EF分别在BMDN上,连接EF,探究三条线段EFBEDF之间满足的数量关系,并证明你的结论.

3)如图,当点EF分别在对角线BD、边CD上.若FC2,则BE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知二次函数y=ax22ax3aa0)图象与x轴交于点AB(点A在点B的左侧),与y轴交于点C,顶点为D

1)求点AB的坐标;

2)若M为对称轴与x轴交点,且DM=2AM

求二次函数解析式;

t2xt时,二次函数有最大值5,求t值;

若直线x=4与此抛物线交于点E,将抛物线在CE之间的部分记为图象记为图象P(含CE两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b与图象P,图象Q都相交,且只有两个交点,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=BC,∠ABC=90°,点DE分别是边ABBC的中点,点FG是边AC的三等分点,DFEG的延长线相交于点H,连接HAHC

(1)求证:四边形FBGH是菱形;

(2)求证:四边形ABCH是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O在△ABC内,点PQR分别在边ABBCCA上,且OPBCOQCAORABOP=OQ=OR=xBC=aCA=bAB=c,则x=( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,MBC上一点,FAM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N

1)求证:△ABM∽△EFA

2)若AB=12BM=5,求DE的长.

查看答案和解析>>

同步练习册答案