【题目】在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,顶点为D.
(1)求点A,B的坐标;
(2)若M为对称轴与x轴交点,且DM=2AM.
①求二次函数解析式;
②当t﹣2≤x≤t时,二次函数有最大值5,求t值;
③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b与图象P,图象Q都相交,且只有两个交点,求b的取值范围.
【答案】(1)A(﹣1,0)、B(3,0);(2)①y=x2﹣2x﹣3;②t值为0或4;③﹣1≤b<11或b=﹣4.
【解析】
(1)令y=0,即:ax2﹣2ax﹣3a=0,解得:x=﹣1或3,即可求解;
(2)①DM=2AM=4,即点D的坐标为(1,﹣4),将点D的坐标代入二次函数表达式,即可求解;
②分x=t和x=t﹣2在对称轴右侧、左侧或两侧三种情况,讨论求解即可;
③如下图所示,直线m、l、n都是直线y=kx+b与图象P、Q都相交,且只有两个交点的临界点,即可求解.
解:(1)令y=0,即:ax2﹣2ax﹣3a=0,解得:x=﹣1或3,
即点A、B的坐标分别为(﹣1,0)、(3,0),函数的对称轴
(2)①DM=2AM=4,即点D的坐标为(1,﹣4),
将点D的坐标代入二次函数表达式得:
﹣4=a﹣2a﹣3a,解得:a=1,即函数的表达式为:y=x2﹣2x﹣3;
②当x=t和x=t﹣2在对称轴右侧时,函数在x=t处,取得最大值,
即:t2﹣2t﹣3=5,解得:t=﹣2或4(舍去t=﹣2),即t=4;
同理当x=t和x=t﹣2在对称轴左侧或两侧时,解得:t=0,
故:t值为0或4;
③如下图所示,直线m、l、n都是直线y=kx+b与图象P、Q都相交,且只有两个交点的临界点,
点E、R、C'坐标分别为(4,5)、(10,﹣4)、(8,﹣3),直线l的表达式:把点E、R的坐标代入直线y=kx+b得:
解得:
同理可得直线m的表达式为:
直线n的表达式为:y=﹣4,故:b的取值范围为:﹣1≤b<11或b=﹣4.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知抛物线的对称轴所在的直线是,点B的坐标为
抛物线的解析式是______;
若点P是直线BC下方抛物线上一动点,当时,求出点P的坐标;
若M为x轴上一动点,在抛物线上是否存在点N,使得点B,C,M,N构成的四边形是菱形?若存在,求出N点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是AD、BC的中点,,若,则下列结论:;;;若M是正方形内任一点,当时,的周长的最小值为;其中正确的结论
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.
(1)m= ;
(2)求点C的坐标;
(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,郑州市某校开设了“3D”打印、数学编程、智能机器人、陶艺制作”四门创客课程,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查(问卷调查表如表所示),将调查结果整理后绘制成图1、图2两幅均不完整的统计图表.
最受欢理的创客课程词查问卷
你好!这是一份关于你喜欢的创客深程问卷调查表,请你在表格中选择一个(只能选择一个)你最喜欢的课程选项在其后空格内打“√“,非常感谢你的合作.
请根据图表中提供的值息回答下列问题:
(1)统计表中的a= ,b= ;
(2)“D”对应扇形的圆心角为 ;
(3)根据调查结果,请你估计该校2000名学生中最喜欢“数学编程”创客课程的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与ACCD的大小关系;
(2)求∠ABD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为,吊臂底部A距地面参考数据,,.
当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为______计算结果精确到;
如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?吊钩的长度与货物的高度忽略不计
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2 ,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com