【题目】如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.
【答案】(1)①点Q在OC上时Q(t,t),点Q在CB上时Q(2t﹣1,3);②t=5;(2)①v=,点Q所经过的路程为(16﹣t);②直线PQ不可能同时把梯形OABC的面积也分成相等的两部分.
【解析】
试题分析:(1)①根据相似三角形的性质即可求得点Q在OC上时的坐标;根据路程即可求得点Q在CB上时的横坐标是(2t﹣5),纵坐标和点C的纵坐标一致,是3;
②显然此时Q在CB上,由平行四边形的知识可得,只需根据OP=CQ列方程求解;
(2)①设Q的速度为v,根据P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,即可建立函数关系式;
②显然Q应在CB上,根据面积和①中的结论得到关于t的方程,进行求解.
试题解析:(1)①点Q在OC上时Q(t,t),点Q在CB上时Q(2t﹣1,3).
②显然Q在CB上,由平行四边形的知识可得,只须OP=CQ.所以2t﹣5=t得t=5.
(2)①设Q的速度为v,先求梯形的周长为32,可得t+vt=16,所以v=,点Q所经过的路程为(16﹣t);
②当Q在OC上时,做QM⊥OA,垂足为M,则QM=(16﹣t)×,∴S△OPQ=×(16﹣t)t=t(16﹣t)=S梯形OABC,则令t(16﹣t)=18,解得t1=10,t2=6,当t1=10时,16﹣x=6,此时点Q不在OC上,舍去;当t2=6时,16﹣x=10,此时点Q也不在OC上,舍去;∴当Q点在OC上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分.
当Q点在CB上时,CQ=16﹣t﹣5=11﹣x,∴S梯形OPQC=×(11﹣x+x)×3=≠18,∴当Q点在CB上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分.
综上所述,直线PQ不可能同时把梯形OABC的面积也分成相等的两部分.
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球5个,黄球2个,小明将球搅匀,从中任意摸出一个球.
(1)会有哪些可能的结果?
(2)若从中任意摸出一个球是白球的概率为0.5,求口袋中红球的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形①平行四边形;②菱形;③对角线互相垂直的四边形;④对角线相等的四边形,满足条件的是( )
A.①③④
B.②③
C.①②④
D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】舌尖上的浪费让人触目惊心! 据统计,中国每年浪费的食物总量折合成粮食约为50000000000千克,把50000000000用科学记数法表示为( ).
A. 5×1010B. 50×109C. 5×109D. 0.5×1011
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.必然事件发生的概率为0
B.一组数据1,6,3,9,8的极差为7
C.“面积相等的两个三角形全等”这一事件是必然事件
D.“任意一个三角形的外角和等于180°”这一事件是不可能事件
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组部分统计数据.
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次数 | 23 | 31 | 60 | 127 | 203 | 251 |
摸到黑球的频率 | 0.23 | 0.21 | 0.30 | 0.254 | 0.253 |
(1)根据上表数据计算 = . 估计从袋中摸出一个球是黑球的概率是 . (精确到0. 01)
(2)估算袋中白球的个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com