精英家教网 > 初中数学 > 题目详情
(2012•瑶海区三模)已知抛物线y=ax2+bx+c(a≠0)过点A(-3,0),B(1,0),C(0,3)三点.
(1)求该抛物线的函数关系式;
(2)若抛物线的顶点为P,连接PA、AC、CP,求△PAC的面积;
(3)过点C作y轴的垂线,交抛物线于点D,连接PD、BD,BD交AC于点E,判断四边形PCED的形状,并说明理由.
分析:(1)根据待定系数法将A(-3,0),B(1,0),C(0,3)三点代入解析式求出即可;
(2)利用两点之间距离公式求出PA=2
5
PC=
2
AC=3
2
,进而得出△PAC为直角三角形,求出面积即可;
(3)首先求出点D的坐标为(-2,3),PC=DP,进而得出四边形PCED是菱形,再利用∠PCA=90°,得出答案即可.
解答:(1)由题意得:
9a-3b+c=0
a+b+c=0
c=3

解得:
a=-1
b=-2
c=3

∴y=-x2-2x+3;

(2)∵y=-x2-2x+3=-(x+1)2+4,
∴P(-1,4),
∵A(-3,0),B(1,0),C(0,3),
PA=2
5
PC=
2
AC=3
2

∵PA2=PC2+AC2
∴∠PCA=90°,
S△APC=
1
2
×AC×PC=
1
2
×
2
×3
2
=3


(3)四边形PCED是正方形,
∵点C与点D关于抛物线的对称轴对称,点P为抛物线的顶点,
∴点D的坐标为(-2,3),PC=DP,
∵A(-3,0),C(0,3),代入y=ax+b,
b=3
-3k+b=0

解得:
a=1
b=3

∴直线AC的函数关系式是:y=x+3,
同理可得出:直线DP的函数关系式是:y=x+5,
∴AC∥DP,
同理可得:PC∥BD,
∴四边形PCED是菱形,
又∵∠PCA=90°,
∴四边形PCED是正方形.
点评:此题考查了二次函数解析式的确定、函数图象交点坐标的求法以及菱形与正方形的判定方法,难度不大,细心求解即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•瑶海区三模)下列二次函数解析式中,其图象与y轴的交点在x轴下方的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•瑶海区三模)如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•瑶海区三模)如图,某电信公司计划修建一条连接B、C两地的电缆.测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B处测得C地的仰角为60°,已知C地比A地高200m,求电缆BC的长.(结果可保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•瑶海区三模)姚明将带队来我市体育馆进行表演比赛,市体育局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).
方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为
y=8000+50x
y=8000+50x

方案二中,当0≤x≤100时,y与x的函数关系式为
y=80x
y=80x

当x>100时,y与x的函数关系式为
y=100x-2000
y=100x-2000

(2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场篮球赛门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张.

查看答案和解析>>

同步练习册答案