如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.
(1)求证:AE=CF;
(2)连结DB交EF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.
![]()
(1)证明见解析
(2)四边形DEGF是菱形.理由见解析
【解析】
试题分析:(1)由正方形的性质可得AD=CD,∠A=∠C=90°,然后利用“SAS”证明△ADE和△CDF全等,根据全等三角形对应边相等可得AE=CF;
(2)由(1)可得BE=BF,从而可得DE=DF,再根据到线段两端点距离相等的点在线段的垂直平分线可得BD为EF的中垂线,然后根据对角线互相垂直平分的四边形是菱形即可得证.
试题解析:(1)在正方形ABCD中,AD=CD,∠A=∠C=90°,
又∵∠ADE=∠CDF,
∴△ADE≌△CDF(ASA),
∴AE=CF;
(2)四边形DEGF是菱形.
理由如下:在正方形ABCD中,AB=BC,
∵AE=CF,
∴AB﹣AE=BC﹣CF,
即BE=BF,
∵△ADE≌△CDF,
∴DE=DF,
∴BD垂直平分EF,
又∵OG=OD,
∴四边形DEGF是菱形.
考点:1、正方形的性质;2、中垂线的判定;3、菱形的判定
科目:初中数学 来源:2014年初中毕业升学考试(福建莆田卷)数学(解析版) 题型:填空题
如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是 .
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(福建三明卷)数学(解析版) 题型:解答题
如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;
(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(福建三明卷)数学(解析版) 题型:选择题
一个多边形的内角和是外角和的2倍,则这个多边形是( )
A.四边形 B.五边形 C.六边形 D.八边形
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(甘肃天水卷)数学(解析版) 题型:填空题
如图,点A是反比例函数y=
的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=
的图象于点C,则△OAC的面积为 .
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(甘肃天水卷)数学(解析版) 题型:选择题
如图,是某公园的一角,∠AOB=90°,
的半径OA长是6米,点C是OA的中点,点D在
上,CD∥OB,则图中草坪区(阴影部分)的面积是( )
![]()
A.(3π+
)米 B.(
π+
)米 C.(3π+9
)米 D.(
π﹣9
)米
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(甘肃兰州卷)数学(解析版) 题型:解答题
(1)计算:(﹣1)2﹣2cos30°+
+(﹣2014)0;
(2)当x为何值时,代数式x2﹣x的值等于1.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南长沙卷)数学(解析版) 题型:选择题
如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为( )
![]()
A.2cm B.3cm C.4cm D.6cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com