分析 将(0,0),(1,3)代入y=x2+bx+c求得b,c的值,得到此函数的解析式;再把一般式转化为顶点式,由顶点式可得顶点的坐标.
解答 解:分别将(0,0),(1,3)代入函数解析式,
得出二元一次方程组$\left\{\begin{array}{l}{c=0}\\{1+b+c=3}\end{array}\right.$解得$\left\{\begin{array}{l}{b=2}\\{c=0}\end{array}\right.$
所以,该二次函数的解析式为y=x2+2x;
该二次函数的解析式y=x2+2x可化为:y=(x+1)2-1,
所以该抛物线的顶点坐标为(-1,-1).
点评 本题考查了二次函数解析式的求法,以及二次函数顶点式的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{\frac{1}{2}x+1<3-\frac{1}{2}x}\\{3x<2x+3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{3-\frac{1}{3}x<\frac{1}{2}x+1}\\{2x+3<3x}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{3-\frac{1}{2}x<\frac{1}{2}x+1}\\{3x<2x+3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{1}{2}x+1<3-\frac{1}{2}x}\\{2x+3<3x}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com