精英家教网 > 初中数学 > 题目详情
根据如图中的抛物线,当x______时,y有最大值.
由图可得,对称轴为x=
-2+6
2
=2,即当x=2时,y有最大值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象经过A(-1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,若二次函数y=
3
6
x2+bx+c的图象与x轴交于A(-2,0),B(3,0)两点,点A关于正比例函数y=
3
x的图象的对称点为C.
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=
3
x的图象于点D,连结AC,交正比例函数y=
3
x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知过坐标原点的抛物线经过A(x1,0),B(x2,3)两点,且x1、x2是方程x2+5x+6=0两根(x1>x2),抛物线顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点E的坐标;
(3)P是抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P、M、O为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若点P1(-1,y1),P2(-2,y2),P3(1,y3),都在函数y=x2-2x+3的图象上,则(  )
A.y2<y1<y3B.y1<y2<y3C.y2>y1>y3D.y1>y2>y3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DEBC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B′DEC′,B′C′与AB、AC分别交于点M、N.
(1)证明:△ADE△ABC;
(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:在面积为7的梯形ABCD中,ADBC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PEDQ交AQ于E,作PFAQ交DQ于F,则△PEF面积最大值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC是锐角三角形,BC=6,面积为12,点P在AB上,点Q在AC上,如图所示,正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC公共部分的面积为y.
(1)当RS落在BC上时,求x;
(2)当RS不落在BC上时,求y与x的函数关系式;
(3)求公共部分面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=9-4x2的最大值是______.

查看答案和解析>>

同步练习册答案